Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3072-3076. doi: 10.1109/EMBC48229.2022.9871437.
The biological response to electrodes implanted in the brain has been a long-standing barrier to achieving a stable tissue device-interface. Understanding the mechanisms underlying this response could explain phenomena including recording instability and loss, shifting stimulation thresholds, off-target effects of neuromodulation, and stimulation-induced depression of neural excitability. Our prior work detected differential expression in hundreds of genes following device implantation. Here, we extend upon that work by providing new analyses using differential co-expression analysis, which identifies changes in the correlation structure between groups of genes detected at the interface in comparison to control tissues. We used an "eigengene" approach to identify hub genes associated with each module. Our work adds to a growing body of literature which applies new techniques in molecular biology and computational analysis to long-standing issues surrounding electrode integration with the brain.
电极植入大脑后引发的生物反应一直是实现稳定的组织-器件界面的长期障碍。理解该反应的机制可以解释包括记录不稳定性和丢失、刺激阈值变化、神经调节的脱靶效应以及刺激诱导的神经兴奋性抑制等现象。我们之前的工作发现了器件植入后数百个基因的差异表达。在这里,我们通过使用差异共表达分析提供了新的分析,该分析确定了与对照组织相比,在界面处检测到的基因组之间相关性结构的变化。我们使用“特征基因(eigengene)”方法来识别与每个模块相关的枢纽基因。我们的工作增加了越来越多的文献,这些文献将分子生物学和计算分析的新技术应用于围绕电极与大脑集成的长期问题。