Suppr超能文献

从情绪唤起和效价评估任务中的行为反应分类轻度认知障碍——老龄化社会中早期痴呆生物标志物的人工智能方法

Classifying Mild Cognitive Impairment from Behavioral Responses in Emotional Arousal and Valence Evaluation Task - AI Approach for Early Dementia Biomarker in Aging Societies.

作者信息

Rutkowski Tomasz M, Abe Masato S, Koculak Marcin, Otake-Matsuura Mihoko

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5537-5543. doi: 10.1109/EMBC44109.2020.9175805.

Abstract

The presented paper discusses a practical application of machine learning (ML) in the so-called 'AI for social good' domain and in particular concerning the problem of a potential elderly adult dementia onset prediction. An increase in dementia cases is producing a significant medical and economic weight in many countries. Approximately 47 million older adults live with a dementia spectrum of neurocognitive disorders, according to an up-to-date statement of the World Health Organization (WHO), and this amount will triple within the next thirty years. This growing problem calls for possible application of AI-based technologies to support early diagnostics for cognitive interventions and a subsequent mental wellbeing monitoring as well as maintenance with so-called 'digital-pharma' or 'beyond a pill' therapeutical strategies. The paper explains our attempt and encouraging preliminary study results of behavioral responses analysis in a facial emotion implicit-short-term-memory learning and evaluation experiment. We present results of various shallow and deep learning machine learning models for digital biomarkers of dementia progress detection and monitoring. The discussed machine-learning models result in median accuracies right below a 90% benchmark using classical shallow and deep learning approaches for automatic discrimination of normal cognition versus a mild cognitive impairment (MCI). The classifier input features consist of an older adult emotional valence and arousal recognition responses, together with reaction times, as well as with self-reported university-level degree education and age, as obtained from a group of 35 older adults participating voluntarily in the reported dementia biomarker development project. The presented results showcase the inherent social benefits of artificial intelligence (AI) utilization for the elderly and establish a step forward to advance machine learning (ML) approaches for the subsequent employment of simple behavioral examination for MCI and dementia onset diagnostics.Clinical relevance- This manuscript establishes a behavioral and cognitive biomarker candidate potentially substituting a Montreal Cognitive Assessment (MoCA) evaluation without a paper and pencil test.

摘要

本文讨论了机器学习(ML)在所谓的“造福社会的人工智能”领域的实际应用,特别是关于潜在的老年痴呆症发病预测问题。痴呆症病例的增加在许多国家造成了巨大的医学和经济负担。根据世界卫生组织(WHO)的最新声明,约有4700万老年人患有神经认知障碍痴呆症谱系,这一数字在未来三十年内将增至三倍。这个日益严重的问题促使人们可能应用基于人工智能的技术来支持认知干预的早期诊断、后续的心理健康监测以及采用所谓的“数字药物”或“超越药片”的治疗策略进行维持治疗。本文解释了我们在面部情绪内隐短期记忆学习与评估实验中进行行为反应分析的尝试以及令人鼓舞的初步研究结果。我们展示了用于痴呆症进展检测和监测的数字生物标志物的各种浅层和深层机器学习模型的结果。所讨论的机器学习模型使用经典的浅层和深层学习方法自动区分正常认知与轻度认知障碍(MCI),其准确率中位数略低于90%的基准。分类器的输入特征包括老年人的情绪效价和唤醒识别反应、反应时间,以及从一组自愿参与所报告的痴呆症生物标志物开发项目的35名老年人那里获得的自我报告的大学学历教育程度和年龄。所呈现的结果展示了人工智能(AI)应用于老年人所带来的内在社会效益,并朝着推进机器学习(ML)方法迈出了一步,以便后续将简单行为检查用于MCI和痴呆症发病诊断。临床相关性——本手稿确定了一种行为和认知生物标志物候选物,有可能在无需纸笔测试的情况下替代蒙特利尔认知评估(MoCA)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验