Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5066-5069. doi: 10.1109/EMBC48229.2022.9871326.
The aim of the study is to present and tune a fully automatic deep learning algorithm to segment colorectal cancers (CRC) on MR images, based on a U-Net structure. It is a multicenter study, including 3 different Italian institutions, that used 4 different MRI scanners. Two of them were used for training and tuning the systems, while the other two for the validation. The implemented algorithm consists of a pre-processing step to normalize and to highlight the tumoral area, followed by the CRC segmentation using different U-net structures. Automatic masks were compared with manual segmentations performed by three experienced radiologists, one at each center. The two best performing systems (called mdl2 and mdl3), obtained a median Dice Similarity Coefficient of 0.68(mdl2) - 0.69(mdl3), precision of 0.75(md/2) - 0.71(md/3), and recall of 0.69(mdl2) - 0.73(mdl3) on the validation set. Both systems reached high detection rates, 0.98 and 0.95, respectively, on the validation set. These encouraging results, if confirmed on larger dataset, might improve the management of patients with CRC, since it can be used as a fast and precise tool for further radiomics analyses. Clinical Relevance - To provide a reliable tool able to automatically segment CRC tumors that can be used as first step in future radiomics studies aimed at predicting response to chemotherapy and personalizing treatment.
本研究旨在提出并调整一种基于 U-Net 结构的全自动深度学习算法,以分割磁共振成像(MRI)上的结直肠癌(CRC)。这是一项多中心研究,包括意大利的 3 个不同机构,使用了 4 种不同的 MRI 扫描仪。其中 2 种用于训练和调整系统,另外 2 种用于验证。所实现的算法包括一个预处理步骤,用于标准化和突出肿瘤区域,然后使用不同的 U-net 结构进行 CRC 分割。自动掩模与由每个中心的 3 名经验丰富的放射科医生进行的手动分割进行了比较。两个表现最佳的系统(称为 mdl2 和 mdl3)在验证集上获得了 0.68(mdl2)-0.69(mdl3)的中位数 Dice 相似系数,0.75(md/2)-0.71(md/3)的精度,0.69(mdl2)-0.73(mdl3)的召回率。这两个系统在验证集上均达到了较高的检测率,分别为 0.98 和 0.95。如果在更大的数据集上得到证实,这些令人鼓舞的结果可能会改善 CRC 患者的管理,因为它可以用作进一步进行放射组学分析的快速且精确的工具。临床相关性 - 提供一种能够自动分割 CRC 肿瘤的可靠工具,该工具可作为未来旨在预测化疗反应和个性化治疗的放射组学研究的第一步。