Suppr超能文献

埃塞俄比亚北谢瓦地区公立医院产妇接近死亡病例的决定因素:病例对照研究。

Determinants of maternal near-miss among women admitted to public hospitals in North Shewa Zone, Ethiopia: A case-control study.

机构信息

Department of Nursing, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia.

Department of Public Health, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia.

出版信息

Front Public Health. 2022 Aug 25;10:996885. doi: 10.3389/fpubh.2022.996885. eCollection 2022.

Abstract

BACKGROUND

A maternal near-miss (MNM) refers to a woman who presents with life-threatening complications during pregnancy, childbirth, or within 42 days of termination of pregnancy but survived by chance or due to the standard care she received. It is recognized as a valuable indicator to examine the quality of obstetrics care as it follows similar predictors with maternal death. Ethiopia is one of the sub-Saharan African countries with the highest rate of maternal mortality and morbidity. Thus, studying the cause and predictors of maternal near-miss is vital to improving the quality of obstetric care, particularly in low-income countries.

OBJECTIVE

To identify determinants of maternal near-miss among women admitted to public hospitals in North Shewa Zone, Ethiopia, 2020.

METHODS

A facility-based unmatched case-control study was conducted on 264 women (88 cases and 176 controls) from February to April 2020. Data were collected using pretested interviewer-administered questionnaires and a review of medical records. Data were entered into Epi-data version 4.2.2 and exported to SPSS version 25 for analysis. Variables with a -value <0.25 in the bivariable analysis were further analyzed using multivariable logistic regression analysis. Finally, variables with a -value <0.05 were considered statistically significant.

RESULT

Severe pre-eclampsia (49.5%) and postpartum hemorrhage (28.3%) were the main reasons for admission of cases. Educational level of women (AOR = 4.80, 95% CI: 1.78-12.90), education level of husbands (AOR = 5.26; 95% CI: 1.46-18.90), being referred from other health facilities (AOR = 4.73, 95% CI: 1.78-12.55), antenatal care visit (AOR = 2.75, 95% CI: 1.13-6.72), cesarean section (AOR = 3.70, 95% CI: 1.42-9.60), and medical disorder during pregnancy (AOR = 12.06, 95% CI: 2.82-51.55) were found to significantly increase the risk of maternal near-miss. Whereas, the younger age of women significantly decreased the risk of maternal near miss (AOR = 0.26, 95% CI: 0.09-0.75).

CONCLUSION

Age, educational level, antenatal care follow-ups, medical disorder during pregnancy, mode of admission, and mode of delivery were significant predictors of maternal near-miss. Socio-demographic development, use of ANC services, early detection and management of medical diseases, reducing cesarean section, and improving the referral systems are crucial to minimizing the maternal near-miss.

摘要

背景

孕产妇near-miss(MNM)是指在妊娠、分娩或终止妊娠后 42 天内出现危及生命的并发症但侥幸存活的女性。它被认为是评估产科护理质量的有价值指标,因为它与孕产妇死亡具有相似的预测因素。埃塞俄比亚是撒哈拉以南非洲国家中孕产妇死亡率和发病率最高的国家之一。因此,研究孕产妇 near-miss 的原因和预测因素对于提高产科护理质量至关重要,尤其是在低收入国家。

目的

确定 2020 年在埃塞俄比亚北谢瓦地区公立医院住院的妇女发生孕产妇 near-miss 的决定因素。

方法

2020 年 2 月至 4 月期间,对 264 名妇女(88 例病例和 176 名对照)进行了基于机构的非匹配病例对照研究。使用经过预测试的访谈者管理的问卷和病历回顾收集数据。数据输入 Epi-data 版本 4.2.2 并导出到 SPSS 版本 25 进行分析。在单变量分析中 - 值<0.25 的变量进一步使用多变量逻辑回归分析进行分析。最后,- 值<0.05 的变量被认为具有统计学意义。

结果

严重子痫前期(49.5%)和产后出血(28.3%)是导致病例入院的主要原因。妇女的教育水平(AOR=4.80,95%CI:1.78-12.90)、丈夫的教育水平(AOR=5.26;95%CI:1.46-18.90)、从其他卫生机构转诊(AOR=4.73,95%CI:1.78-12.55)、产前检查(AOR=2.75,95%CI:1.13-6.72)、剖宫产(AOR=3.70,95%CI:1.42-9.60)和妊娠期间的医疗疾病(AOR=12.06,95%CI:2.82-51.55)被发现显著增加了孕产妇 near-miss 的风险。然而,妇女的年龄较小显著降低了孕产妇 near miss 的风险(AOR=0.26,95%CI:0.09-0.75)。

结论

年龄、教育水平、产前保健随访、妊娠期间的医疗疾病、入院模式和分娩方式是孕产妇 near-miss 的显著预测因素。社会人口发展、利用 ANC 服务、早期发现和管理医疗疾病、减少剖宫产和改善转诊系统对于最大限度地减少孕产妇 near-miss 至关重要。

相似文献

引用本文的文献

4
Analysis of cases of near misses in obstetric-gynaecological practice.妇产科临床中险些发生的医疗差错案例分析。
Arch Gynecol Obstet. 2025 Apr;311(4):1073-1080. doi: 10.1007/s00404-024-07898-0. Epub 2025 Jan 24.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验