Gittins Jamie W, Balhatchet Chloe J, Fairclough Simon M, Forse Alexander C
Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK.
Chem Sci. 2022 Jul 18;13(32):9210-9219. doi: 10.1039/d2sc03389e. eCollection 2022 Aug 17.
Metal-organic frameworks (MOFs) are among the most promising materials for next-generation energy storage systems. However, the impact of particle morphology on the energy storage performances of these frameworks is poorly understood. To address this, here we use coordination modulation to synthesise three samples of the conductive MOF Cu(HHTP) (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with distinct microstructures. Supercapacitors assembled with these samples conclusively demonstrate that sample microstructure and particle morphology have a significant impact on the energy storage performances of MOFs. Samples with 'flake-like' particles, with a pore network comprised of many short pores, display superior capacitive performances than samples with either 'rod-like' or strongly agglomerated particles. The results of this study provide a target microstructure for conductive MOFs for energy storage applications.
金属有机框架材料(MOFs)是下一代储能系统中最具潜力的材料之一。然而,人们对颗粒形态对这些框架材料储能性能的影响了解甚少。为了解决这个问题,我们在此利用配位调制合成了具有不同微观结构的三种导电MOF材料Cu(HHTP)(HHTP = 2,3,6,7,10,11-六羟基三亚苯)样品。用这些样品组装的超级电容器确凿地证明,样品的微观结构和颗粒形态对MOFs的储能性能有重大影响。具有由许多短孔组成的孔网络的“片状”颗粒样品,比具有“棒状”或强团聚颗粒的样品表现出更优异的电容性能。本研究结果为储能应用的导电MOFs提供了目标微观结构。