Zheng Jianwei, Abudayyeh Islam, Mladenov Georgi, Struppa Daniele, Fu Guohua, Chu Huimin, Rakovski Cyril
Schmid College of Science and Technology, Chapman University, Orange, CA, United States.
Department of Cardiology, Loma Linda University Health, Loma Linda, CA, United States.
Front Cardiovasc Med. 2022 Aug 24;9:855356. doi: 10.3389/fcvm.2022.855356. eCollection 2022.
Design to develop an artificial intelligence (AI) algorithm to accurately predict the pulmonary artery pressure (PAP) waveform using non-invasive signal inputs.
We randomly sampled training, validation, and testing datasets from a waveform database containing 180 patients with pulmonary atrial catheters (PACs) placed for PAP waves collection. The waveform database consisted of six hemodynamic parameters from bedside monitoring machines, including PAP, artery blood pressure (ABP), central venous pressure (CVP), respiration waveform (RESP), photoplethysmogram (PPG), and electrocardiogram (ECG). We trained a Residual Convolutional Network using a training dataset containing 144 (80%) patients, tuned learning parameters using a validation set including 18 (10%) patients, and tested the performance of the method using 18 (10%) patients, respectively. After comparing all multi-stage algorithms on the testing cohort, the combination of the residual neural network model and wavelet scattering transform data preprocessing method attained the highest coefficient of determination of 90.78% as well as the following other performance metrics and corresponding 95% confidence intervals (CIs): mean square error of 11.55 (10.22-13.5), mean absolute error of 2.42 (2.06-2.85), mean absolute percentage error of 0.91 (0.76-1.13), and explained variance score of 90.87 (85.32-93.31).
The proposed analytical approach that combines data preprocessing, sampling method, and AI algorithm can precisely predict PAP waveform using three input signals obtained by noninvasive approaches.
设计开发一种人工智能(AI)算法,利用非侵入性信号输入准确预测肺动脉压(PAP)波形。
我们从一个波形数据库中随机抽取训练、验证和测试数据集,该数据库包含180例放置肺动脉导管(PAC)以收集PAP波形的患者。波形数据库由床边监测仪的六个血流动力学参数组成,包括PAP、动脉血压(ABP)、中心静脉压(CVP)、呼吸波形(RESP)、光电容积脉搏波描记图(PPG)和心电图(ECG)。我们使用包含144例(80%)患者的训练数据集训练了一个残差卷积网络,使用包含18例(10%)患者的验证集调整学习参数,并分别使用18例(10%)患者测试该方法的性能。在测试队列中比较所有多阶段算法后,残差神经网络模型和小波散射变换数据预处理方法的组合获得了最高的决定系数90.78%,以及以下其他性能指标和相应的95%置信区间(CI):均方误差为11.55(10.22 - 13.5),平均绝对误差为2.42(2.06 - 2.85),平均绝对百分比误差为0.91(0.76 - 1.13),解释方差得分90.87(85.32 - 93.31)。
所提出的结合数据预处理、采样方法和AI算法的分析方法能够使用通过非侵入性方法获得的三个输入信号精确预测PAP波形。