Kashou Anthony H, Ko Wei-Yin, Attia Zachi I, Cohen Michal S, Friedman Paul A, Noseworthy Peter A
Department of Medicine, Mayo Clinic, Rochester, Minnesota.
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
Cardiovasc Digit Health J. 2020 Sep 8;1(2):62-70. doi: 10.1016/j.cvdhj.2020.08.005. eCollection 2020 Sep-Oct.
Automated computerized electrocardiogram (ECG) interpretation algorithms are designed to enhance physician ECG interpretation, minimize medical error, and expedite clinical workflow. However, the performance of current computer algorithms is notoriously inconsistent. We aimed to develop and validate an artificial intelligence-enabled ECG (AI-ECG) algorithm capable of comprehensive 12-lead ECG interpretation with accuracy comparable to practicing cardiologists.
We developed an AI-ECG algorithm using a convolutional neural network as a multilabel classifier capable of assessing 66 discrete, structured diagnostic ECG codes using the cardiologist's final annotation as the gold-standard interpretation. We included 2,499,522 ECGs from 720,978 patients ≥18 years of age with a standard 12-lead ECG obtained at the Mayo Clinic ECG laboratory between 1993 and 2017. The total sample was randomly divided into training (n = 1,749,654), validation (n = 249,951), and testing (n = 499,917) datasets with a similar distribution of codes. We compared the AI-ECG algorithm's performance to the cardiologist's interpretation in the testing dataset using receiver operating characteristic (ROC) and precision recall (PR) curves.
The model performed well for various rhythm, conduction, ischemia, waveform morphology, and secondary diagnoses codes with an area under the ROC curve of ≥0.98 for 62 of the 66 codes. PR metrics were used to assess model performance accounting for category imbalance and demonstrated a sensitivity ≥95% for all codes.
An AI-ECG algorithm demonstrates high diagnostic performance in comparison to reference cardiologist interpretation of a standard 12-lead ECG. The use of AI-ECG reading tools may permit scalability as ECG acquisition becomes more ubiquitous.
自动化计算机心电图(ECG)解读算法旨在增强医生对心电图的解读能力,最大限度减少医疗差错,并加快临床工作流程。然而,目前计算机算法的性能 notoriously inconsistent。我们旨在开发并验证一种能够进行全面12导联心电图解读的人工智能心电图(AI-ECG)算法,其准确性可与执业心脏病专家相媲美。
我们使用卷积神经网络开发了一种AI-ECG算法,作为多标签分类器,能够使用心脏病专家的最终注释作为金标准解读来评估66个离散的、结构化的诊断心电图代码。我们纳入了1993年至2017年在梅奥诊所心电图实验室获得标准12导联心电图的720978名18岁及以上患者的2499522份心电图。总样本被随机分为训练集(n = 1749654)、验证集(n = 249951)和测试集(n = 499917),各数据集代码分布相似。我们在测试数据集中使用受试者操作特征(ROC)曲线和精确召回率(PR)曲线,将AI-ECG算法的性能与心脏病专家的解读进行比较。
该模型在各种节律、传导、缺血、波形形态和次要诊断代码方面表现良好,66个代码中有62个的ROC曲线下面积≥0.98。PR指标用于评估考虑类别不平衡情况下的模型性能,所有代码的敏感度均≥95%。
与心脏病专家对标准12导联心电图的解读相比,AI-ECG算法具有较高的诊断性能。随着心电图采集变得更加普遍,使用AI-ECG阅读工具可能会实现可扩展性。