State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China.
Nucleic Acids Res. 2022 Sep 23;50(17):10187-10199. doi: 10.1093/nar/gkac765.
Natural methylotrophs are attractive methanol utilization hosts, but lack flexible expression tools. In this study, we developed yeast transcriptional device libraries for precise synthesis of value-added chemicals from methanol. We synthesized transcriptional devices by fusing bacterial DNA-binding proteins (DBPs) with yeast transactivation domains, and linking bacterial binding sequences (BSs) with the yeast core promoter. Three DBP-BS pairs showed good activity when working with transactivation domains and the core promoter of PAOX1 in the methylotrophic yeast, Pichia pastoris. Fine-tuning of the tandem BSs, spacers and differentiated input promoters further enabled a constitutive transcriptional device library (cTRDL) composed of 126 transcriptional devices with an expression strength of 16-520% and an inducible TRDL (iTRDL) composed of 162 methanol-inducible transcriptional devices with an expression strength of 30-500%, compared with PAOX1. Selected devices from iTRDL were adapted to the dihydromonacolin L biosynthetic pathway by orthogonal experimental design, reaching 5.5-fold the production from the PAOX1-driven pathway. The full factorial design of the selected devices from the cTRDL was adapted to the downstream pathway of dihydromonacolin L to monacolin J. Monacolin J production from methanol reached 3.0-fold the production from the PAOX1-driven pathway. Our engineered toolsets ensured multilevel pathway control of chemical synthesis in methylotrophic yeasts.
天然甲醇营养菌是具有吸引力的甲醇利用宿主,但缺乏灵活的表达工具。在本研究中,我们开发了酵母转录器件文库,用于从甲醇精确合成增值化学品。我们通过融合细菌 DNA 结合蛋白 (DBP) 与酵母转录激活结构域,并将细菌结合序列 (BS) 与酵母核心启动子连接,合成了转录器件。在甲醇营养型酵母毕赤酵母中,三个 DBP-BS 对与转录激活结构域和 PAOX1 的酵母核心启动子结合时表现出良好的活性。串联 BS、间隔子和差异化输入启动子的精细调整进一步使组成型转录器件文库 (cTRDL) 由 126 个转录器件组成,表达强度为 16-520%,诱导型 TRDL (iTRDL) 由 162 个甲醇诱导型转录器件组成,表达强度为 30-500%,与 PAOX1 相比。从 iTRDL 中选择的器件通过正交实验设计适应二氢莫纳可林 L 生物合成途径,达到 PAOX1 驱动途径的 5.5 倍产量。从 cTRDL 中选择的器件的全因子设计适应二氢莫纳可林 L 到洛伐他汀 J 的下游途径。从甲醇生产洛伐他汀 J 的产量达到 PAOX1 驱动途径的 3.0 倍。我们设计的工具集确保了甲醇营养型酵母中化学合成的多层次途径控制。