Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030.
Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208.
J Neurosci. 2022 Oct 26;42(43):8054-8065. doi: 10.1523/JNEUROSCI.1261-22.2022. Epub 2022 Sep 12.
The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS. Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.
轴突起始段(AIS)通过调节蛋白质、运输小泡和细胞器的差异运输和分布来产生动作电位并维持神经元极性。损伤和疾病会破坏 AIS,随后簇集的离子通道和极性机制的丧失可能会改变神经元的兴奋性和功能。然而,AIS 破坏对损伤后轴突再生的影响尚不清楚。我们通过删除 AnkyrinG(组装和维持 AIS 所必需的主要支架蛋白),生成了 AIS 缺陷型多极运动神经元的雄性和雌性小鼠。我们发现,与对照小鼠相比,AIS 缺陷型运动神经元的神经肌肉接点再神经支配明显延迟。相比之下,从伪单极感觉神经元中丢失 AnkyrinG 并不影响轴突再生到表皮内神经纤维层。即使 AIS 缺陷型运动神经元重新支配神经肌肉接点,由于突触小泡蛋白 2 在突触前末端减少,它们也无法恢复功能。此外,AIS 缺陷型轴突中的 mRNA 运输受到干扰。我们的结果表明,在神经损伤后,完整的 AIS 对于多极运动神经元中轴突的有效再生和功能恢复至关重要。我们的结果还表明,AIS 缺陷型运动神经元中极性的丧失会损害轴突蛋白、mRNA 和其他再生所需货物的运输。因此,轴突再生的治疗策略必须考虑 AIS 的保存或重新组装。AIS 的破坏是神经系统损伤后的常见事件。对于多极运动神经元,我们表明 AIS 对于损伤后轴突的再生和功能恢复至关重要。我们的结果可能有助于解释轴突再生失败的损伤,并提出促进更有效轴突再生的策略。