Suppr超能文献

可耗尽过氧化物酶样活性的 FeO 纳米酶伴随着电子和铁离子的单独迁移。

Depletable peroxidase-like activity of FeO nanozymes accompanied with separate migration of electrons and iron ions.

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

出版信息

Nat Commun. 2022 Sep 12;13(1):5365. doi: 10.1038/s41467-022-33098-y.

Abstract

As pioneering FeO nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe within FeO can transfer electrons to the surface via the Fe-O-Fe chain, regenerating the surface Fe and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe from the lattice, which is a rate-limiting step. After prolonged catalysis, FeO nanozymes suffer the phase transformation to γ-FeO with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.

摘要

作为开创性的 FeO 纳米酶,其明确的过氧化物酶(POD)样催化机制仍难以捉摸。尽管许多研究提出了表面 Fe 诱导的类 Fenton 反应来解释其 POD 样活性,但很少有研究关注内部原子变化及其对催化反应的贡献。在这里,我们报告说,FeO 中的 Fe 可以通过 Fe-O-Fe 链将电子转移到表面,从而再生表面 Fe,并实现持续的 POD 样催化反应。这个过程通常伴随着晶格中过量氧化 Fe 的向外迁移,这是一个限速步骤。在长时间的催化作用后,FeO 纳米酶会发生相变,生成具有可耗尽 POD 样活性的 γ-FeO。这种涉及电子转移和离子迁移的内部原子的纳米酶的自我消耗特性在磷酸铁锂纳米粒子上得到了很好的验证。我们揭示了一个被忽视的问题,即在设计、调节和应用纳米酶时,有必要同时考虑表面原子和内部原子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de2/9467987/a96d6d396e12/41467_2022_33098_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验