School of Architecture, Tsinghua University, Beijing, 100084, China.
School of Architecture and Hang Lung Center for Real Estate, Key Laboratory of Eco Planning & Green Building, Ministry of Education, Tsinghua University, Beijing, 100084, China.
Sci Data. 2022 Sep 12;9(1):563. doi: 10.1038/s41597-022-01675-x.
Spatially explicit population grid can play an important role in climate change, resource management, sustainable development and other fields. Several gridded datasets already exist, but global data, especially high-resolution data on future populations are largely lacking. Based on the WorldPop dataset, we present a global gridded population dataset covering 248 countries or areas at 30 arc-seconds (approximately 1 km) spatial resolution with 5-year intervals for the period 2020-2100 by implementing Random Forest (RF) algorithm. Our dataset is quantitatively consistent with the Shared Socioeconomic Pathways' (SSPs) national population. The spatially explicit population dataset we predicted in this research is validated by comparing it with the WorldPop dataset both at the sub-national and grid level. 3569 provinces (almost all provinces on the globe) and more than 480 thousand grids are taken into verification, and the results show that our dataset can serve as an input for predictive research in various fields.
空间显式人口网格在气候变化、资源管理、可持续发展等领域可以发挥重要作用。已经存在一些网格化数据集,但全球数据,特别是未来人口的高分辨率数据在很大程度上仍然缺乏。基于 WorldPop 数据集,我们通过实施随机森林 (RF) 算法,以 30 弧秒(约 1 公里)的空间分辨率和每 5 年为间隔,提供了一个涵盖 248 个国家或地区的全球网格化人口数据集,涵盖 2020-2100 年期间的数据。我们的数据集在数量上与共享社会经济途径(SSP)的国家人口一致。我们通过将预测的空间显式人口数据集与 WorldPop 数据集在国家和网格层面进行比较,对其进行了验证。我们验证了 3569 个省(几乎全球所有的省份)和超过 48 万个网格,结果表明,我们的数据集可以作为各种领域预测性研究的输入。