Suppr超能文献

通过类蚕自动喷射电纺丝实现具有形状记忆功能的人体器官尺度三维地形支架的自搜索写入。

Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet.

机构信息

Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.

Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 28;14(38):42841-42851. doi: 10.1021/acsami.2c07682. Epub 2022 Sep 15.

Abstract

Bioengineered scaffolds satisfying both the physiological and anatomical considerations could potentially repair partially damaged tissues to whole organs. Although three-dimensional (3D) printing has become a popular approach in making 3D topographic scaffolds, electrospinning stands out from all other techniques for fabricating extracellular matrix mimicking fibrous scaffolds. However, its complex charge-influenced jet-field interactions and the associated random motion were hardly overcome for almost a century, thus preventing it from being a viable technique for 3D topographic scaffold construction. Herein, we constructed, for the first time, geometrically challenging 3D fibrous scaffolds using biodegradable poly(ε-caprolactone), mimicking human-organ-scale face, female breast, nipple, and vascular graft, with exceptional shape memory and free-standing features by a novel field self-searching process of autopilot polymer jet, essentially resembling the silkworm-like cocoon spinning. With a simple electrospinning setup and innovative writing strategies supported by simulation, we successfully overcame the intricate jet-field interactions while preserving high-fidelity template topographies, excellent target recognition, with pattern features ranging from 100's μm to 10's cm. A 3D cell culture study ensured the anatomical compatibility of the so-made 3D scaffolds. Our approach brings the century-old electrospinning to the new list of viable 3D scaffold constructing techniques, which goes beyond applications in tissue engineering.

摘要

生物工程支架既能满足生理需求,又能满足解剖学要求,有可能修复部分受损组织到整个器官。尽管三维(3D)打印已成为制造 3D 地形支架的一种流行方法,但静电纺丝在制造模仿细胞外基质的纤维状支架方面优于所有其他技术。然而,由于复杂的电荷影响射流场相互作用以及相关的随机运动,几乎一个世纪以来,它一直难以克服,因此无法成为 3D 地形支架构建的可行技术。在这里,我们首次使用可生物降解的聚己内酯构建了具有挑战性的几何形状的 3D 纤维支架,模拟了人类器官级别的面部、女性乳房、乳头和血管移植物,具有出色的形状记忆和自支撑特性,这是通过一种新型的自动聚合物射流场自搜索过程实现的,本质上类似于蚕茧的纺丝方式。通过一个简单的静电纺丝装置和由模拟支持的创新书写策略,我们成功地克服了复杂的射流场相互作用,同时保留了高保真模板地形,具有出色的目标识别能力,图案特征从 100μm 到 10cm 不等。三维细胞培养研究确保了所制造的 3D 支架的解剖兼容性。我们的方法将具有百年历史的静电纺丝技术纳入了可行的 3D 支架构建技术的新列表中,其应用范围超出了组织工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aae/9523717/20f68b46ba8b/am2c07682_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验