Suppr超能文献

使用深度学习算法在第三空间内镜检查中进行血管和组织识别。

Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm.

机构信息

Department of Gastroenterology, Universitätsklinikum Augsburg, Augsburg, Germany

Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany.

出版信息

Gut. 2022 Dec;71(12):2388-2390. doi: 10.1136/gutjnl-2021-326470. Epub 2022 Sep 15.

Abstract

In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.

摘要

在这项研究中,我们旨在开发一种人工智能临床决策支持解决方案,以减轻在复杂的内窥镜手术(例如内窥镜黏膜下剥离术和经口内镜肌切开术)期间操作员依赖性的限制,例如出血和穿孔。基于 DeepLabv3 的模型被训练来描绘来自这些手术的内窥镜静止图像中的血管、组织结构和器械。平均交叉验证的交并比和骰子分数分别为 63%和 76%。应用于第三空间内窥镜手术的标准化视频剪辑,该算法显示出 85%的平均血管检测率和 0.75/min 的假阳性率。这些性能统计数据表明,该算法在手术安全性、时间和培训方面具有潜在的临床益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ab/9664130/cdcea319a89a/gutjnl-2021-326470f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验