Suppr超能文献

DLAB:基于结构的抗体虚拟筛选的深度学习方法。

DLAB: deep learning methods for structure-based virtual screening of antibodies.

机构信息

Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.

Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB2 0AA, UK.

出版信息

Bioinformatics. 2022 Jan 3;38(2):377-383. doi: 10.1093/bioinformatics/btab660.

Abstract

MOTIVATION

Antibodies are one of the most important classes of pharmaceuticals, with over 80 approved molecules currently in use against a wide variety of diseases. The drug discovery process for antibody therapeutic candidates however is time- and cost-intensive and heavily reliant on in vivo and in vitro high throughput screens. Here, we introduce a framework for structure-based deep learning for antibodies (DLAB) which can virtually screen putative binding antibodies against antigen targets of interest. DLAB is built to be able to predict antibody-antigen binding for antigens with no known antibody binders.

RESULTS

We demonstrate that DLAB can be used both to improve antibody-antigen docking and structure-based virtual screening of antibody drug candidates. DLAB enables improved pose ranking for antibody docking experiments as well as selection of antibody-antigen pairings for which accurate poses are generated and correctly ranked. We also show that DLAB can identify binding antibodies against specific antigens in a case study. Our results demonstrate the promise of deep learning methods for structure-based virtual screening of antibodies.

AVAILABILITY AND IMPLEMENTATION

The DLAB source code and pre-trained models are available at https://github.com/oxpig/dlab-public.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

抗体是最重要的一类药物之一,目前已有超过 80 种批准的分子用于治疗各种疾病。然而,抗体治疗候选药物的发现过程既耗时又昂贵,严重依赖于体内和体外高通量筛选。在这里,我们引入了一个基于结构的深度学习框架(DLAB),该框架可以虚拟筛选针对感兴趣抗原靶标的潜在结合抗体。DLAB 的构建目的是能够预测没有已知抗体结合物的抗原的抗体-抗原结合。

结果

我们证明 DLAB 可用于改进抗体-抗原对接和基于结构的抗体药物候选物虚拟筛选。DLAB 能够改善抗体对接实验的构象排序,并选择生成和正确排序准确构象的抗体-抗原配对。我们还表明,DLAB 可以在案例研究中识别针对特定抗原的结合抗体。我们的结果表明,深度学习方法在基于结构的抗体虚拟筛选方面具有广阔的前景。

可用性和实施

DLAB 的源代码和预训练模型可在 https://github.com/oxpig/dlab-public 上获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea17/8723137/6b87a1283c68/btab660f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验