Suppr超能文献

基于结构的深度学习蛋白质设计。

Structure-based protein design with deep learning.

机构信息

John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.

Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.

出版信息

Curr Opin Chem Biol. 2021 Dec;65:136-144. doi: 10.1016/j.cbpa.2021.08.004. Epub 2021 Sep 20.

Abstract

Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information - but largely piece-by-piece - from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.

摘要

自从通过三维结构揭示蛋白质作为大分子机器的功能以来,研究人员一直对蛋白质进行生物化学过程的奇妙方式感到好奇。理解蛋白质结构的愿望激发了不同科学领域的广泛努力。近年来,已经证明可以通过基于结构的建模方法设计具有新功能或形状的蛋白质,并且设计策略结合了所有可用信息 - 但主要是从序列衍生的统计信息到化学相互作用的详细原子级建模的逐个部分信息。尽管取得了重大进展,但通过使用深度学习方法整合数据衍生方法可能会改变游戏规则。在这篇综述中,我们总结了当前的进展,比较了开发深度学习方法与传统方法的轨迹,并描述了当前策略背后的动机和概念,这些策略可能会带来潜在的未来机遇。

相似文献

1
Structure-based protein design with deep learning.基于结构的深度学习蛋白质设计。
Curr Opin Chem Biol. 2021 Dec;65:136-144. doi: 10.1016/j.cbpa.2021.08.004. Epub 2021 Sep 20.
2
Generative deep learning for macromolecular structure and dynamics.生成式深度学习在大分子结构与动力学中的应用。
Curr Opin Struct Biol. 2021 Apr;67:170-177. doi: 10.1016/j.sbi.2020.11.012. Epub 2020 Dec 15.
5
A new age in protein design empowered by deep learning.深度学习赋能的蛋白质设计新时代。
Cell Syst. 2023 Nov 15;14(11):925-939. doi: 10.1016/j.cels.2023.10.006.
6
Deep Learning in Protein Structural Modeling and Design.蛋白质结构建模与设计中的深度学习
Patterns (N Y). 2020 Nov 12;1(9):100142. doi: 10.1016/j.patter.2020.100142. eCollection 2020 Dec 11.
7
Structure-based drug design with geometric deep learning.基于结构的药物设计与几何深度学习。
Curr Opin Struct Biol. 2023 Apr;79:102548. doi: 10.1016/j.sbi.2023.102548. Epub 2023 Feb 24.

引用本文的文献

本文引用的文献

4
De novo protein design by deep network hallucination.基于深度网络幻觉的从头设计蛋白质。
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
7
Generative deep learning for macromolecular structure and dynamics.生成式深度学习在大分子结构与动力学中的应用。
Curr Opin Struct Biol. 2021 Apr;67:170-177. doi: 10.1016/j.sbi.2020.11.012. Epub 2020 Dec 15.
8
Deep Learning in Protein Structural Modeling and Design.蛋白质结构建模与设计中的深度学习
Patterns (N Y). 2020 Nov 12;1(9):100142. doi: 10.1016/j.patter.2020.100142. eCollection 2020 Dec 11.
10
Fast and Flexible Protein Design Using Deep Graph Neural Networks.利用深度图神经网络实现快速灵活的蛋白质设计。
Cell Syst. 2020 Oct 21;11(4):402-411.e4. doi: 10.1016/j.cels.2020.08.016. Epub 2020 Sep 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验