Suppr超能文献

通过机器学习势理解 PdNiRuIrRh 高熵合金上的碱性氢氧化反应。

Understanding Alkaline Hydrogen Oxidation Reaction on PdNiRuIrRh High-Entropy-Alloy by Machine Learning Potential.

机构信息

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

Core Facility of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202217976. doi: 10.1002/anie.202217976. Epub 2023 May 19.

Abstract

High-entropy alloy (HEA) catalysts have been widely studied in electrocatalysis. However, identifying atomic structure of HEA with complex atomic arrangement is challenging, which seriously hinders the fundamental understanding of catalytic mechanism. Here, we report a HEA-PdNiRuIrRh catalyst with remarkable mass activity of 3.25 mA μg for alkaline hydrogen oxidation reaction (HOR), which is 8-fold enhancement compared to that of commercial Pt/C. Through machine learning potential-based Monte Carlo simulation, we reveal that the dominant Pd-Pd-Ni/Pd-Pd-Pd bonding environments and Ni/Ru oxophilic sites on HEA surface are beneficial to the optimized adsorption/desorption of *H and enhanced *OH adsorption, contributing to the excellent HOR activity and stability. This work provides significant insights into atomic structure and catalytic mechanism for HEA and offers novel prospects for developing advanced HOR electrocatalysts.

摘要

高熵合金(HEA)催化剂在电催化中得到了广泛的研究。然而,具有复杂原子排列的 HEA 的原子结构的鉴定具有挑战性,这严重阻碍了对催化机制的基本理解。在这里,我们报道了一种具有显著质量活性的 HEA-PdNiRuIrRh 催化剂,用于碱性氢氧化反应(HOR),其质量活性是商业 Pt/C 的 8 倍。通过基于机器学习势的蒙特卡罗模拟,我们揭示了 HEA 表面的主导 Pd-Pd-Ni/Pd-Pd-Pd 键合环境和 Ni/Ru 亲氧位点有利于H 的优化吸附/解吸和增强OH 吸附,从而促进了优异的 HOR 活性和稳定性。这项工作为 HEA 的原子结构和催化机制提供了重要的见解,并为开发先进的 HOR 电催化剂提供了新的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验