Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan; MOST AI Biomedical Research Center, Tainan, Taiwan.
Anesthesiology. 2022 Dec 1;137(6):704-715. doi: 10.1097/ALN.0000000000004378.
Improper endotracheal tube (ETT) positioning is frequently observed and potentially hazardous in the intensive care unit. The authors developed a deep learning-based automatic detection algorithm detecting the ETT tip and carina on portable supine chest radiographs to measure the ETT-carina distance. This study investigated the hypothesis that the algorithm might be more accurate than frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement.
A deep learning-based automatic detection algorithm was developed using 1,842 portable supine chest radiographs of 1,842 adult intubated patients, where two board-certified intensivists worked together to annotate the distal ETT end and tracheal bifurcation. The performance of the deep learning-based algorithm was assessed in 4-fold cross-validation (1,842 radiographs), external validation (216 radiographs), and an observer performance test (462 radiographs) involving 11 critical care clinicians. The performance metrics included the errors from the ground truth in ETT tip detection, carina detection, and ETT-carina distance measurement.
During 4-fold cross-validation and external validation, the median errors (interquartile range) of the algorithm in ETT-carina distance measurement were 3.9 (1.8 to 7.1) mm and 4.2 (1.7 to 7.8) mm, respectively. During the observer performance test, the median errors (interquartile range) of the algorithm were 2.6 (1.6 to 4.8) mm, 3.6 (2.1 to 5.9) mm, and 4.0 (1.7 to 7.2) mm in ETT tip detection, carina detection, and ETT-carina distance measurement, significantly superior to that of 6, 10, and 7 clinicians (all P < 0.05), respectively. The algorithm outperformed 7, 3, and 0, 9, 6, and 4, and 5, 5, and 3 clinicians (all P < 0.005) regarding the proportions of chest radiographs within 5 mm, 10 mm, and 15 mm error in ETT tip detection, carina detection, and ETT-carina distance measurement, respectively. No clinician was significantly more accurate than the algorithm in any comparison.
A deep learning-based algorithm can match or even outperform frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement.
在重症监护病房中,经常观察到且潜在危险的是气管内导管(ETT)定位不当。作者开发了一种基于深度学习的自动检测算法,用于检测便携式仰卧位胸部 X 光片中的 ETT 尖端和隆嵴,以测量 ETT-隆嵴距离。本研究假设该算法在 ETT 尖端检测、隆嵴检测和 ETT-隆嵴距离测量方面可能比一线重症监护临床医生更准确。
使用 1842 名插管成年患者的 1842 张便携式仰卧位胸部 X 光片,开发了一种基于深度学习的自动检测算法,两名认证的重症监护医师共同标注远端 ETT 端和气管分叉。在 4 折交叉验证(1842 张 X 光片)、外部验证(216 张 X 光片)和包括 11 名重症监护临床医生的观察者表现测试(462 张 X 光片)中评估基于深度学习的算法的性能。性能指标包括 ETT 尖端检测、隆嵴检测和 ETT-隆嵴距离测量的实际测量值的误差。
在 4 折交叉验证和外部验证期间,算法在 ETT-隆嵴距离测量中的中位数误差(四分位距)分别为 3.9(1.8 至 7.1)mm 和 4.2(1.7 至 7.8)mm。在观察者表现测试中,算法在 ETT 尖端检测、隆嵴检测和 ETT-隆嵴距离测量中的中位数误差(四分位距)分别为 2.6(1.6 至 4.8)mm、3.6(2.1 至 5.9)mm 和 4.0(1.7 至 7.2)mm,明显优于 6、10 和 7 名临床医生(均 P < 0.05)。该算法在 ETT 尖端检测、隆嵴检测和 ETT-隆嵴距离测量方面,分别在 ETT 尖端检测、隆嵴检测和 ETT-隆嵴距离测量中,分别有 7、3 和 0、9、6 和 4、5、5 和 3 名临床医生的胸部 X 光片的比例在 5mm、10mm 和 15mm 误差范围内表现优于任何一名临床医生(均 P < 0.005)。没有临床医生在任何比较中明显比算法更准确。
基于深度学习的算法可以匹配甚至超过一线重症监护临床医生在 ETT 尖端检测、隆嵴检测和 ETT-隆嵴距离测量方面的表现。