Mao Liang-Kai, Huang Min-Hsin, Lai Chao-Han, Sun Yung-Nien, Chen Chi-Yeh
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701401, Taiwan.
Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan.
Diagnostics (Basel). 2022 Aug 7;12(8):1913. doi: 10.3390/diagnostics12081913.
In intensive care units (ICUs), after endotracheal intubation, the position of the endotracheal tube (ETT) should be checked to avoid complications. The malposition can be detected by the distance between the ETT tip and the Carina (ETT-Carina distance). However, it struggles with a limited performance for two major problems, i.e., occlusion by external machine, and the posture and machine of taking chest radiographs. While previous studies addressed these problems, they always suffered from the requirements of manual intervention. Therefore, the purpose of this paper is to locate the ETT tip and the Carina more accurately for detecting the malposition without manual intervention. The proposed architecture is composed of FCOS: Fully Convolutional One-Stage Object Detection, an attention mechanism named Coarse-to-Fine Attention (CTFA), and a segmentation branch. Moreover, a post-process algorithm is adopted to select the final location of the ETT tip and the Carina. Three metrics were used to evaluate the performance of the proposed method. With the dataset provided by National Cheng Kung University Hospital, the accuracy of the malposition detected by the proposed method achieves 88.82% and the ETT-Carina distance errors are less than 5.333±6.240 mm.
在重症监护病房(ICU)中,气管插管后应检查气管内导管(ETT)的位置以避免并发症。气管内导管位置不当可通过ETT尖端与隆突之间的距离(ETT-隆突距离)来检测。然而,它在解决两个主要问题时性能有限,即被外部设备遮挡,以及拍摄胸部X光片时的姿势和设备问题。虽然先前的研究解决了这些问题,但它们总是需要人工干预。因此,本文的目的是在无需人工干预的情况下更准确地定位ETT尖端和隆突,以检测位置不当情况。所提出的架构由FCOS:全卷积单阶段目标检测、一种名为从粗到细注意力(CTFA)的注意力机制和一个分割分支组成。此外,采用一种后处理算法来选择ETT尖端和隆突的最终位置。使用三个指标来评估所提方法的性能。利用国立成功大学医院提供的数据集,所提方法检测位置不当情况的准确率达到88.82%,ETT-隆突距离误差小于5.333±6.240毫米。