Suppr超能文献

使用深度学习模型结合外部验证对重症监护病房胸部 X 光片进行图像增强和人工测量气管导管隆突距离。

Image augmentation and automated measurement of endotracheal-tube-to-carina distance on chest radiographs in intensive care unit using a deep learning model with external validation.

机构信息

Methodological Support Unit, Reunion University Hospital, Saint-Denis, France.

Clinical Informatics Department, Reunion University Hospital, Saint-Denis, France.

出版信息

Crit Care. 2023 Jan 25;27(1):40. doi: 10.1186/s13054-023-04320-0.

Abstract

BACKGROUND

Chest radiographs are routinely performed in intensive care unit (ICU) to confirm the correct position of an endotracheal tube (ETT) relative to the carina. However, their interpretation is often challenging and requires substantial time and expertise. The aim of this study was to propose an externally validated deep learning model with uncertainty quantification and image segmentation for the automated assessment of ETT placement on ICU chest radiographs.

METHODS

The CarinaNet model was constructed by applying transfer learning to the RetinaNet model using an internal dataset of ICU chest radiographs. The accuracy of the model in predicting the position of the ETT tip and carina was externally validated using a dataset of 200 images extracted from the MIMIC-CXR database. Uncertainty quantification was performed using the level of confidence in the ETT-carina distance prediction. Segmentation of the ETT was carried out using edge detection and pixel clustering.

RESULTS

The interrater agreement was 0.18 cm for the ETT tip position, 0.58 cm for the carina position, and 0.60 cm for the ETT-carina distance. The mean absolute error of the model on the external test set was 0.51 cm for the ETT tip position prediction, 0.61 cm for the carina position prediction, and 0.89 cm for the ETT-carina distance prediction. The assessment of ETT placement was improved by complementing the human interpretation of chest radiographs with the CarinaNet model.

CONCLUSIONS

The CarinaNet model is an efficient and generalizable deep learning algorithm for the automated assessment of ETT placement on ICU chest radiographs. Uncertainty quantification can bring the attention of intensivists to chest radiographs that require an experienced human interpretation. Image segmentation provides intensivists with chest radiographs that are quickly interpretable and allows them to immediately assess the validity of model predictions. The CarinaNet model is ready to be evaluated in clinical studies.

摘要

背景

在重症监护病房(ICU)中,常规进行胸部 X 光检查以确认气管内导管(ETT)相对于隆突的正确位置。然而,其解释通常具有挑战性,需要大量的时间和专业知识。本研究旨在提出一种具有不确定性量化和图像分割功能的经过外部验证的深度学习模型,用于自动评估 ICU 胸部 X 光片上的 ETT 放置位置。

方法

通过应用迁移学习,使用 ICU 胸部 X 光片的内部数据集,构建了 CarinaNet 模型。使用从 MIMIC-CXR 数据库中提取的 200 张图像数据集,对模型预测 ETT 尖端和隆突位置的准确性进行了外部验证。通过 ETT-隆突距离预测的置信度进行不确定性量化。使用边缘检测和像素聚类对 ETT 进行分割。

结果

ETT 尖端位置的组内一致性为 0.18cm,隆突位置为 0.58cm,ETT-隆突距离为 0.60cm。模型在外部测试集上的平均绝对误差为 ETT 尖端位置预测为 0.51cm,隆突位置预测为 0.61cm,ETT-隆突距离预测为 0.89cm。通过将 CarinaNet 模型与胸部 X 光片的人工解释相结合,可以提高 ETT 放置的评估。

结论

CarinaNet 模型是一种用于自动评估 ICU 胸部 X 光片上 ETT 放置位置的高效且可推广的深度学习算法。不确定性量化可以引起重症监护医生对需要有经验的人工解释的胸部 X 光片的注意。图像分割为重症监护医生提供了易于解释的胸部 X 光片,并允许他们立即评估模型预测的有效性。CarinaNet 模型已准备好进行临床研究评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d743/9878756/cb4d5f974c5f/13054_2023_4320_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验