Nitschke Tobias, Stenhammar Joakim, Wittkowski Raphael
Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
Division of Physical Chemistry, Lund University SE-221 00 Lund Sweden.
Nanoscale Adv. 2022 May 14;4(13):2844-2856. doi: 10.1039/d2na00007e. eCollection 2022 Jun 28.
One of the most important potential applications of motile nano- and microdevices is targeted drug delivery. To realize this, biocompatible particles that can be guided collectively towards a target inside a patient's body are required. Acoustically propelled nano- and microparticles constitute a promising candidate for such biocompatible, artificial motile particles. The main remaining obstacle to targeted drug delivery by motile nano- and microdevices is to also achieve a reliable and biocompatible method for guiding them collectively to their target. Here, we propose such a method. As we confirm by computer simulations, it allows for the remote guiding of large numbers of acoustically propelled particles to a prescribed target by combining a space- and time-dependent acoustic field and a time-dependent magnetic field. The method works without detailed knowledge about the particle positions and for arbitrary initial particle distributions. With these features, it paves the way for the future application of motile particles as vehicles for targeted drug delivery in nanomedicine.
可移动的纳米和微型设备最重要的潜在应用之一是靶向给药。要实现这一点,就需要能够集体导向患者体内目标的生物相容性颗粒。声学驱动的纳米和微粒是这类生物相容性人工可移动颗粒的一个有前景的候选者。可移动的纳米和微型设备在靶向给药方面剩下的主要障碍是还要实现一种可靠且生物相容的方法,将它们集体导向目标。在此,我们提出这样一种方法。正如我们通过计算机模拟所证实的,通过结合随空间和时间变化的声场以及随时间变化的磁场,该方法能够将大量声学驱动的颗粒远程导向指定目标。该方法无需详细了解颗粒位置,适用于任意初始颗粒分布。凭借这些特性,它为可移动颗粒在纳米医学中作为靶向给药载体的未来应用铺平了道路。