磁性纳米花测量的高级分析,以促进其在生物医学中的应用。

Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine.

作者信息

Karpavičius Augustas, Coene Annelies, Bender Philipp, Leliaert Jonathan

机构信息

Department of Solid State Sciences, Ghent University Ghent Belgium

Department of Electromechanical, Systems and Metal Engineering, Ghent University Zwijnaarde Belgium.

出版信息

Nanoscale Adv. 2021 Feb 8;3(6):1633-1645. doi: 10.1039/d0na00966k. eCollection 2021 Mar 23.

Abstract

Magnetic nanoparticles are an important asset in many biomedical applications ranging from the local heating of tumours to targeted drug delivery towards diseased sites. Recently, magnetic nanoflowers showed a remarkable heating performance in hyperthermia experiments thanks to their complex structure leading to a broad range of magnetic dynamics. To grasp their full potential and to better understand the origin of this unexpected heating performance, we propose the use of Kaczmarz' algorithm in interpreting magnetic characterisation measurements. It has the advantage that no assumptions need to be made on the particle size distribution, contrasting current magnetic interpretation methods that often assume a lognormal size distribution. Both approaches are compared on DC magnetometry, magnetorelaxometry and AC susceptibility characterisation measurements of the nanoflowers. We report that the lognormal distribution parameters vary significantly between data sets, whereas Kaczmarz' approach achieves a consistent and accurate characterisation for all measurement sets. Additionally, we introduce a methodology to use Kaczmarz' approach on distinct measurement data sets simultaneously. It has the advantage that the strengths of the individual characterisation techniques are combined and their weaknesses reduced, further improving characterisation accuracy. Our findings are important for biomedical applications as Kaczmarz' algorithm allows to pinpoint multiple, smaller peaks in the nanostructure's size distribution compared to the monomodal lognormal distribution. The smaller peaks permit to fine-tune biomedical applications with respect to these peaks to boost heating or to reduce blurring effects in images. Furthermore, the Kaczmarz algorithm allows for a standardised data analysis for a broad range of magnetic nanoparticle samples. Thus, our approach can improve the safety and efficiency of biomedical applications of magnetic nanoparticles, paving the way towards their clinical use.

摘要

磁性纳米颗粒在许多生物医学应用中都是一项重要资产,涵盖从肿瘤局部加热到向患病部位靶向给药等领域。最近,磁性纳米花在热疗实验中展现出卓越的加热性能,这得益于其复杂结构导致了广泛的磁动力学特性。为了充分挖掘其潜力并更好地理解这种意外加热性能的来源,我们建议使用卡兹马尔兹算法来解释磁性表征测量结果。它的优势在于无需对颗粒尺寸分布做出假设,这与当前常常假设对数正态尺寸分布的磁性解释方法形成对比。我们在纳米花的直流磁强计、磁弛豫测量和交流磁化率表征测量中对这两种方法进行了比较。我们报告称,对数正态分布参数在不同数据集之间差异显著,而卡兹马尔兹方法对所有测量集都能实现一致且准确的表征。此外,我们引入了一种方法,可同时在不同测量数据集上使用卡兹马尔兹方法。其优势在于结合了各个表征技术的长处并减少了它们的短处,进一步提高了表征精度。我们的发现对生物医学应用很重要,因为与单峰对数正态分布相比,卡兹马尔兹算法能够确定纳米结构尺寸分布中的多个较小峰值。这些较小的峰值有助于针对这些峰值微调生物医学应用,以增强加热效果或减少图像中的模糊效应。此外,卡兹马尔兹算法允许对广泛的磁性纳米颗粒样品进行标准化数据分析。因此,我们的方法可以提高磁性纳米颗粒生物医学应用的安全性和效率,为其临床应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e7f/9417518/4391c9cefb85/d0na00966k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索