文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用实验设计方法在同轴流动反应器中进行微流控合成载蛋白纳米凝胶。

Microfluidic synthesis of protein-loaded nanogels in a coaxial flow reactor using a design of experiments approach.

作者信息

Whiteley Zoe, Ho Hei Ming Kenneth, Gan Yee Xin, Panariello Luca, Gkogkos Georgios, Gavriilidis Asterios, Craig Duncan Q M

机构信息

School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK

Department of Chemical Engineering, University College London Torrington Place WC1E 7JE UK.

出版信息

Nanoscale Adv. 2021 Feb 18;3(7):2039-2055. doi: 10.1039/d0na01051k. eCollection 2021 Apr 6.


DOI:10.1039/d0na01051k
PMID:36133085
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9419594/
Abstract

Ionic gelation is commonly used to generate nanogels but often results in poor control over size and polydispersity. In this work we present a novel approach to the continuous manufacture of protein-loaded chitosan nanogels using microfluidics whereby we demonstrate high control and uniformity of the product characteristics. Specifically, a coaxial flow reactor (CFR) was employed to control the synthesis of the nanogels, comprising an inner microcapillary of internal diameter (ID) 0.595 mm and a larger outer glass tube of ID 1.6 mm. The CFR successfully facilitated the ionic gelation process chitosan and lysozyme flowing through the inner microcapillary, while cross-linkers sodium tripolyphosphate (TPP) and 1-ethyl-2-(3-dimethylaminopropyl)-carbodiimide (EDC) flowed through the larger outer tube. In conjunction with the CFR, a four-factor three-level face-centered central composite design (CCD) was used to ascertain the relationship between various factors involved in nanogel production and their responses. Specifically, four factors including chitosan concentration, TPP concentration, flow ratio and lysozyme concentration were investigated for their effects on three responses (size, polydispersity index (PDI) and encapsulation efficiency (% EE)). A desirability function was applied to identify the optimum parameters to formulate nanogels in the CFR with ideal characteristics. Nanogels prepared using the optimal parameters were successfully produced in the nanoparticle range at 84 ± 4 nm, showing a high encapsulation efficiency of 94.6 ± 2.9% and a high monodispersity of 0.26 ± 0.01. The lysis activity of the protein lysozyme was significantly enhanced in the nanogels at 157.6% in comparison to lysozyme alone. Overall, the study has demonstrated that the CFR is a viable method for the synthesis of functional nanogels containing bioactive molecules.

摘要

离子凝胶化常用于制备纳米凝胶,但通常难以精确控制其尺寸和多分散性。在本研究中,我们提出了一种利用微流控技术连续制备载蛋白壳聚糖纳米凝胶的新方法,该方法能够高度控制产品特性并使其具有均匀性。具体而言,采用了同轴流反应器(CFR)来控制纳米凝胶的合成,该反应器由内径为0.595 mm的内部微毛细管和内径为1.6 mm的较大外部玻璃管组成。CFR成功地促进了离子凝胶化过程,壳聚糖和溶菌酶流经内部微毛细管,而交联剂三聚磷酸钠(TPP)和1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)则流经较大的外部管。结合CFR,采用四因素三水平的面心中央复合设计(CCD)来确定纳米凝胶制备过程中各种因素与其响应之间的关系。具体研究了壳聚糖浓度、TPP浓度、流速比和溶菌酶浓度这四个因素对三个响应指标(尺寸、多分散指数(PDI)和包封率(% EE))的影响。应用合意函数来确定在CFR中制备具有理想特性纳米凝胶的最佳参数。使用最佳参数制备的纳米凝胶成功地在84±4 nm的纳米颗粒范围内制备出来,显示出94.6±2.9%的高包封率和0.26±0.01的高单分散性。与单独的溶菌酶相比,纳米凝胶中蛋白质溶菌酶的裂解活性显著提高,达到157.6%。总体而言,该研究表明CFR是合成含有生物活性分子的功能性纳米凝胶的可行方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/8a0b5b97ff4f/d0na01051k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/810942ca44a6/d0na01051k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/7ef228520280/d0na01051k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/c6f37f2c9bba/d0na01051k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/d9077d3d80e3/d0na01051k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/7bd5201b4d78/d0na01051k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/e29bc12fe8cc/d0na01051k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/62d353fa0f2e/d0na01051k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/8a0b5b97ff4f/d0na01051k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/810942ca44a6/d0na01051k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/7ef228520280/d0na01051k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/c6f37f2c9bba/d0na01051k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/d9077d3d80e3/d0na01051k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/7bd5201b4d78/d0na01051k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/e29bc12fe8cc/d0na01051k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/62d353fa0f2e/d0na01051k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/9419594/8a0b5b97ff4f/d0na01051k-f8.jpg

相似文献

[1]
Microfluidic synthesis of protein-loaded nanogels in a coaxial flow reactor using a design of experiments approach.

Nanoscale Adv. 2021-2-18

[2]
Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats.

AAPS PharmSciTech. 2017-5

[3]
An Investigation into the Effects of Processing Factors on the Properties and Scaling-Up Potential of Propranolol-Loaded Chitosan Nanogels.

Pharmaceutics. 2024-5-15

[4]
Design of Experiment Approach to Modeling the Effects of Formulation and Drug Loading on the Structure and Properties of Therapeutic Nanogels.

Mol Pharm. 2022-2-7

[5]
Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery.

Carbohydr Polym. 2012-5-30

[6]
Enhanced antibacterial activity of tilmicosin against small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels.

J Vet Sci. 2022-1

[7]
Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation.

Ther Deliv. 2019-5-1

[8]
An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor.

Nanoscale. 2017-9-28

[9]
Antibacterial activity of florfenicol composite nanogels against small colony variants.

J Vet Sci. 2022-9

[10]
Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular small colony variants.

J Vet Sci. 2022-5

引用本文的文献

[1]
Application of Chitosan-based Nanogel in Cancer Nanomedicine.

Curr Pharm Des. 2025

[2]
Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke.

Drug Deliv Transl Res. 2025-6

[3]
Nanogels: Recent Advances in Synthesis and Biomedical Applications.

Nanomaterials (Basel). 2024-8-1

[4]
An Investigation into the Effects of Processing Factors on the Properties and Scaling-Up Potential of Propranolol-Loaded Chitosan Nanogels.

Pharmaceutics. 2024-5-15

[5]
Epigallocatechin Gallate Potentiates the Anticancer Effect of -siRNA-Loaded Polymeric Nanoparticles on Hepatocellular Carcinoma Cells.

Nanomaterials (Basel). 2023-12-23

[6]
Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.

ACS Nano. 2023-8-8

[7]
Formulation, In Vitro and In Silico Evaluations of Anise ( L.) Essential Oil Emulgel with Improved Antimicrobial Effects.

Gels. 2023-1-28

[8]
Recent Advances in the Biomedical Applications of Functionalized Nanogels.

Pharmaceutics. 2022-12-16

[9]
Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19.

Trends Analyt Chem. 2022-12

[10]
Design of Experiment Approach to Modeling the Effects of Formulation and Drug Loading on the Structure and Properties of Therapeutic Nanogels.

Mol Pharm. 2022-2-7

本文引用的文献

[1]
drug delivery applications of nanogels: a review.

Nanomedicine (Lond). 2020-11

[2]
Staggered Herringbone Microfluid Device for the Manufacturing of Chitosan/TPP Nanoparticles: Systematic Optimization and Preliminary Biological Evaluation.

Int J Mol Sci. 2019-12-9

[3]
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels.

Carbohydr Polym. 2019-11-7

[4]
Application of microfluidic chip technology in pharmaceutical analysis: A review.

J Pharm Anal. 2019-8

[5]
A Design of Experiments (DoE) Approach Accelerates the Optimization of Copper-Mediated F-Fluorination Reactions of Arylstannanes.

Sci Rep. 2019-8-6

[6]
Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins.

ACS Appl Mater Interfaces. 2019-6-13

[7]
The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy.

Gels. 2017-5-8

[8]
The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles.

Pharmaceutics. 2018-12-9

[9]
Lipoplex-Mediated Single-Cell Transfection via Droplet Microfluidics.

Small. 2018-9-10

[10]
Functionalized Electrospun Poly(Vinyl Alcohol) Nanofibrous Membranes with Poly(Methyl Vinyl Ether-Alt-Maleic Anhydride) for Protein Adsorption.

Materials (Basel). 2018-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索