Suppr超能文献

从计算到护理:将早期预警系统应用于临床实践的经验教训。

From compute to care: Lessons learned from deploying an early warning system into clinical practice.

作者信息

Pou-Prom Chloé, Murray Joshua, Kuzulugil Sebnem, Mamdani Muhammad, Verma Amol A

机构信息

Data Science and Advanced Analytics, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.

Department of Statistics, University of Toronto, Toronto, ON, Canada.

出版信息

Front Digit Health. 2022 Sep 5;4:932123. doi: 10.3389/fdgth.2022.932123. eCollection 2022.

Abstract

BACKGROUND

Deploying safe and effective machine learning models is essential to realize the promise of artificial intelligence for improved healthcare. Yet, there remains a large gap between the number of high-performing ML models trained on healthcare data and the actual of these models. Here, we describe the deployment of CHARTwatch, an artificial intelligence-based early warning system designed to predict patient risk of clinical deterioration.

METHODS

We describe the end-to-end infrastructure that was developed to deploy CHARTwatch and outline the process from data extraction to communicating patient risk scores in real-time to physicians and nurses. We then describe the various challenges that were faced in deployment, including technical issues (e.g., unstable database connections), process-related challenges (e.g., changes in how a critical lab is measured), and challenges related to deploying a clinical system in the middle of a pandemic. We report various measures to quantify the success of the deployment: model performance, adherence to workflows, and infrastructure uptime/downtime. Ultimately, success is driven by end-user adoption and impact on relevant clinical outcomes. We assess our deployment process by evaluating how closely we followed existing guidance for good machine learning practice (GMLP) and identify gaps that are not addressed in this guidance.

RESULTS

The model demonstrated strong and consistent performance in real-time in the first 19 months after deployment (AUC 0.76) as in the silent deployment heldout test data (AUC 0.79). The infrastructure remained online for >99% of time in the first year of deployment. Our deployment adhered to all 10 aspects of GMLP guiding principles. Several steps were crucial for deployment but are not mentioned or are missing details in the GMLP principles, including the need for a silent testing period, the creation of robust downtime protocols, and the importance of end-user engagement. Evaluation for impacts on clinical outcomes and adherence to clinical protocols is underway.

CONCLUSION

We deployed an artificial intelligence-based early warning system to predict clinical deterioration in hospital. Careful attention to data infrastructure, identifying problems in a silent testing period, close monitoring during deployment, and strong engagement with end-users were critical for successful deployment.

摘要

背景

部署安全有效的机器学习模型对于实现人工智能改善医疗保健的前景至关重要。然而,在利用医疗数据训练的高性能机器学习模型数量与这些模型的实际应用之间仍存在很大差距。在此,我们描述了CHARTwatch的部署情况,这是一个基于人工智能的早期预警系统,旨在预测患者临床病情恶化的风险。

方法

我们描述了为部署CHARTwatch而开发的端到端基础设施,并概述了从数据提取到将患者风险评分实时传达给医生和护士的过程。然后,我们描述了部署过程中面临的各种挑战,包括技术问题(如数据库连接不稳定)、与流程相关的挑战(如关键实验室检测方法的变化)以及在疫情期间部署临床系统所面临的挑战。我们报告了各种量化部署成功的措施:模型性能、对工作流程的遵守情况以及基础设施的正常运行时间/停机时间。最终,成功取决于终端用户的采用情况以及对相关临床结果的影响。我们通过评估我们对现有良好机器学习实践(GMLP)指南的遵循程度来评估我们的部署过程,并识别该指南未涉及的差距。

结果

该模型在部署后的前19个月中实时表现出强大且一致的性能(AUC为0.76),与在静默部署保留测试数据中的表现(AUC为0.79)相当。在部署的第一年,基础设施的在线时间超过99%。我们的部署遵循了GMLP指导原则的所有10个方面。有几个步骤对部署至关重要,但在GMLP原则中未提及或缺少细节,包括需要一个静默测试期、创建强大的停机协议以及终端用户参与的重要性。对临床结果影响和对临床协议遵守情况的评估正在进行中。

结论

我们部署了一个基于人工智能的早期预警系统来预测医院中的临床病情恶化。对数据基础设施的仔细关注、在静默测试期识别问题、部署期间的密切监测以及与终端用户的紧密合作对于成功部署至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40df/9483018/2ca429c105bc/fdgth-04-932123-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验