Suppr超能文献

通过强化学习估计时空场。

Estimating spatio-temporal fields through reinforcement learning.

作者信息

Padrao Paulo, Fuentes Jose, Bobadilla Leonardo, Smith Ryan N

机构信息

Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States.

Institute for Environment, Florida International University, Miami, FL, United States.

出版信息

Front Robot AI. 2022 Sep 5;9:878246. doi: 10.3389/frobt.2022.878246. eCollection 2022.

Abstract

Prediction and estimation of phenomena of interest in aquatic environments are challenging since they present complex spatio-temporal dynamics. Over the past few decades, advances in machine learning and data processing contributed to ocean exploration and sampling using autonomous robots. In this work, we formulate a reinforcement learning framework to estimate spatio-temporal fields modeled by partial differential equations. The proposed framework addresses problems of the classic methods regarding the sampling process to determine the path to be used by the agent to collect samples. Simulation results demonstrate the applicability of our approach and show that the error at the end of the learning process is close to the expected error given by the fitting process due to added noise.

摘要

预测和估计水生环境中感兴趣的现象具有挑战性,因为它们呈现出复杂的时空动态。在过去几十年中,机器学习和数据处理的进步推动了使用自主机器人进行海洋探索和采样。在这项工作中,我们制定了一个强化学习框架,以估计由偏微分方程建模的时空场。所提出的框架解决了经典方法在采样过程中存在的问题,即确定智能体用于收集样本的路径。仿真结果证明了我们方法的适用性,并表明学习过程结束时的误差接近由于添加噪声而由拟合过程给出的预期误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/9483151/21955b36b61c/frobt-09-878246-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验