Suppr超能文献

卷积神经网络与Transformer在基于计算机断层扫描观察的COVID-19、肺炎及健康个体图像分类中的比较

Comparison of Convolutional Neural Networks and Transformers for the Classification of Images of COVID-19, Pneumonia and Healthy Individuals as Observed with Computed Tomography.

作者信息

Ascencio-Cabral Azucena, Reyes-Aldasoro Constantino Carlos

机构信息

giCentre, Department of Computer Science, School of Science and Technology, City, University of London, London EC1V 0HB, UK.

出版信息

J Imaging. 2022 Sep 1;8(9):237. doi: 10.3390/jimaging8090237.

Abstract

In this work, the performance of five deep learning architectures in classifying COVID-19 in a multi-class set-up is evaluated. The classifiers were built on pretrained ResNet-50, ResNet-50r (with kernel size 5×5 in the first convolutional layer), DenseNet-121, MobileNet-v3 and the state-of-the-art CaiT-24-XXS-224 (CaiT) transformer. The cross entropy and weighted cross entropy were minimised with Adam and AdamW. In total, 20 experiments were conducted with 10 repetitions and obtained the following metrics: accuracy (), balanced accuracy (), and from the general β macro score, Matthew's Correlation Coefficient (), sensitivity () and specificity () followed by bootstrapping. The performance of the classifiers was compared by using the Friedman-Nemenyi test. The results show that less complex architectures such as ResNet-50, ResNet-50r and DenseNet-121 were able to achieve better generalization with rankings of 1.53, 1.71 and 3.05 for the Matthew Correlation Coefficient, respectively, while MobileNet-v3 and CaiT obtained rankings of 3.72 and 5.0, respectively.

摘要

在这项工作中,评估了五种深度学习架构在多类别设置下对新冠肺炎进行分类的性能。分类器基于预训练的ResNet-50、ResNet-50r(在第一个卷积层中内核大小为5×5)、DenseNet-121、MobileNet-v3以及最先进的CaiT-24-XXS-224(CaiT)变压器构建。使用Adam和AdamW将交叉熵和加权交叉熵最小化。总共进行了20次实验,重复10次,并通过自助法获得了以下指标:准确率()、平衡准确率(),以及来自通用β宏分数的、马修斯相关系数()、灵敏度()和特异性()。通过使用Friedman-Nemenyi检验比较了分类器的性能。结果表明,ResNet-50、ResNet-50r和DenseNet-121等不太复杂的架构能够实现更好的泛化,马修斯相关系数的排名分别为1.53、1.71和3.05,而MobileNet-v3和CaiT的排名分别为3.72和5.0。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32dc/9500990/e5621d123409/jimaging-08-00237-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验