Suppr超能文献

ZooCNN:一种用于使用胸部X光片进行肺炎分类的零阶优化卷积神经网络。

ZooCNN: A Zero-Order Optimized Convolutional Neural Network for Pneumonia Classification Using Chest Radiographs.

作者信息

Ganesan Saravana Kumar, Velusamy Parthasarathy, Rajendran Santhosh, Sakthivel Ranjithkumar, Bose Manikandan, Inbaraj Baskaran Stephen

机构信息

Department of Electronics and Communication Engineering, Karpagam College of Engineering, Coimbatore 641032, India.

Department of Computer Science Engineering, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India.

出版信息

J Imaging. 2025 Jan 13;11(1):22. doi: 10.3390/jimaging11010022.

Abstract

Pneumonia, a leading cause of mortality in children under five, is usually diagnosed through chest X-ray (CXR) images due to its efficiency and cost-effectiveness. However, the shortage of radiologists in the Least Developed Countries (LDCs) emphasizes the need for automated pneumonia diagnostic systems. This article presents a Deep Learning model, Zero-Order Optimized Convolutional Neural Network (ZooCNN), a Zero-Order Optimization (Zoo)-based CNN model for classifying CXR images into three classes, Normal Lungs (NL), Bacterial Pneumonia (BP), and Viral Pneumonia (VP); this model utilizes the Adaptive Synthetic Sampling (ADASYN) approach to ensure class balance in the Kaggle CXR Images (Pneumonia) dataset. Conventional CNN models, though promising, face challenges such as overfitting and have high computational costs. The use of ZooPlatform (ZooPT), a hyperparameter finetuning strategy, on a baseline CNN model finetunes the hyperparameters and provides a modified architecture, ZooCNN, with a 72% reduction in weights. The model was trained, tested, and validated on the Kaggle CXR Images (Pneumonia) dataset. The ZooCNN achieved an accuracy of 97.27%, a sensitivity of 97.00%, a specificity of 98.60%, and an F1 score of 97.03%. The results were compared with contemporary models to highlight the efficacy of the ZooCNN in pneumonia classification (PC), offering a potential tool to aid physicians in clinical settings.

摘要

肺炎是五岁以下儿童死亡的主要原因之一,由于其效率和成本效益,通常通过胸部X光(CXR)图像进行诊断。然而,最不发达国家(LDC)放射科医生短缺,这凸显了自动化肺炎诊断系统的必要性。本文提出了一种深度学习模型,即零阶优化卷积神经网络(ZooCNN),这是一种基于零阶优化(Zoo)的卷积神经网络模型,用于将CXR图像分为三类:正常肺部(NL)、细菌性肺炎(BP)和病毒性肺炎(VP);该模型利用自适应合成采样(ADASYN)方法来确保Kaggle CXR图像(肺炎)数据集中的类别平衡。传统的卷积神经网络模型虽然很有前景,但面临着诸如过拟合等挑战,并且计算成本很高。在基线卷积神经网络模型上使用超参数微调策略ZooPlatform(ZooPT)对超参数进行微调,并提供一种改进的架构ZooCNN,其权重减少了72%。该模型在Kaggle CXR图像(肺炎)数据集上进行了训练、测试和验证。ZooCNN的准确率达到97.27%,灵敏度为97.00%,特异性为98.60%,F1分数为97.03%。将结果与当代模型进行比较,以突出ZooCNN在肺炎分类(PC)中的有效性,为临床环境中的医生提供了一种潜在的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5137/11765744/d1a7e062c1ec/jimaging-11-00022-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验