Suppr超能文献

CT图像中新冠病毒检测的二维和三维方法比较与集成

Comparison and ensemble of 2D and 3D approaches for COVID-19 detection in CT images.

作者信息

Ali Ahmed Sara Atito, Yavuz Mehmet Can, Şen Mehmet Umut, Gülşen Fatih, Tutar Onur, Korkmazer Bora, Samancı Cesur, Şirolu Sabri, Hamid Rauf, Eryürekli Ali Ergun, Mammadov Toghrul, Yanikoglu Berrin

机构信息

Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey.

Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, U.K.7XH, UK.

出版信息

Neurocomputing (Amst). 2022 Jun 1;488:457-469. doi: 10.1016/j.neucom.2022.02.018. Epub 2022 Feb 10.

Abstract

Detecting COVID-19 in computed tomography (CT) or radiography images has been proposed as a supplement to the RT-PCR test. We compare slice-based (2D) and volume-based (3D) approaches to this problem and propose a deep learning ensemble, called IST-CovNet, combining the best 2D and 3D systems with novel preprocessing and attention modules and the use of a bidirectional Long Short-Term Memory model for combining slice-level decisions. The proposed ensemble obtains 90.80% accuracy and 0.95 AUC score overall on the newly collected IST-C dataset in detecting COVID-19 among normal controls and other types of lung pathologies; and 93.69% accuracy and 0.99 AUC score on the publicly available MosMedData dataset that consists of COVID-19 scans and normal controls only. The system also obtains state-of-art results (90.16% accuracy and 0.94 AUC) on the COVID-CT-MD dataset which is only used for testing. The system is deployed at Istanbul University Cerrahpaşa School of Medicine where it is used to automatically screen CT scans of patients, while waiting for RT-PCR tests or radiologist evaluation.

摘要

在计算机断层扫描(CT)或X光图像中检测新型冠状病毒肺炎(COVID-19)已被提议作为逆转录聚合酶链反应(RT-PCR)检测的补充手段。我们比较了针对该问题基于切片(二维)和基于体积(三维)的方法,并提出了一种深度学习集成方法,称为IST-CovNet,它将最佳的二维和三维系统与新颖的预处理和注意力模块相结合,并使用双向长短期记忆模型来合并切片级别的决策。在新收集的IST-C数据集中,所提出的集成方法在正常对照和其他类型肺部病变中检测COVID-19时,总体准确率达到90.80%,曲线下面积(AUC)得分为0.95;在仅由COVID-19扫描图像和正常对照组成的公开可用MosMedData数据集中,准确率为93.69%,AUC得分为0.99。该系统在仅用于测试的COVID-CT-MD数据集上也取得了领先的结果(准确率90.16%,AUC 0.94)。该系统已部署在伊斯坦布尔大学塞拉哈帕夏医学院,用于在等待RT-PCR检测结果或放射科医生评估期间自动筛查患者的CT扫描图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b619/8942080/55137b63aaa3/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验