Suppr超能文献

从卷积神经网络(CNNs)提取的图像嵌入在胸部X光片分类中优于其他迁移学习方法。

Image Embeddings Extracted from CNNs Outperform Other Transfer Learning Approaches in Classification of Chest Radiographs.

作者信息

Gozzi Noemi, Giacomello Edoardo, Sollini Martina, Kirienko Margarita, Ammirabile Angela, Lanzi Pierluca, Loiacono Daniele, Chiti Arturo

机构信息

IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy.

Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, 8092 Zurich, Switzerland.

出版信息

Diagnostics (Basel). 2022 Aug 28;12(9):2084. doi: 10.3390/diagnostics12092084.

Abstract

To identify the best transfer learning approach for the identification of the most frequent abnormalities on chest radiographs (CXRs), we used embeddings extracted from pretrained convolutional neural networks (CNNs). An explainable AI (XAI) model was applied to interpret black-box model predictions and assess its performance. Seven CNNs were trained on CheXpert. Three transfer learning approaches were thereafter applied to a local dataset. The classification results were ensembled using simple and entropy-weighted averaging. We applied Grad-CAM (an XAI model) to produce a saliency map. Grad-CAM maps were compared to manually extracted regions of interest, and the training time was recorded. The best transfer learning model was that which used image embeddings and random forest with simple averaging, with an average AUC of 0.856. Grad-CAM maps showed that the models focused on specific features of each CXR. CNNs pretrained on a large public dataset of medical images can be exploited as feature extractors for tasks of interest. The extracted image embeddings contain relevant information that can be used to train an additional classifier with satisfactory performance on an independent dataset, demonstrating it to be the optimal transfer learning strategy and overcoming the need for large private datasets, extensive computational resources, and long training times.

摘要

为了确定用于识别胸部X光片(CXR)上最常见异常的最佳迁移学习方法,我们使用了从预训练卷积神经网络(CNN)中提取的嵌入。应用可解释人工智能(XAI)模型来解释黑箱模型预测并评估其性能。在CheXpert上训练了七个CNN。此后,将三种迁移学习方法应用于本地数据集。使用简单平均和熵加权平均对分类结果进行集成。我们应用Grad-CAM(一种XAI模型)来生成显著性图。将Grad-CAM图与手动提取的感兴趣区域进行比较,并记录训练时间。最佳迁移学习模型是使用图像嵌入和随机森林并采用简单平均的模型,平均AUC为0.856。Grad-CAM图表明模型关注每个CXR的特定特征。在大型医学图像公共数据集上预训练的CNN可以用作感兴趣任务的特征提取器。提取的图像嵌入包含相关信息,可用于在独立数据集上训练具有满意性能的附加分类器,证明其为最佳迁移学习策略,并克服了对大型私有数据集、大量计算资源和长时间训练的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验