Suppr超能文献

通过改进胸部X光图像中疾病病变的可视化实现基于机器学习的诊断。

Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images.

作者信息

Rahman Md Fashiar, Tseng Tzu-Liang Bill, Pokojovy Michael, McCaffrey Peter, Walser Eric, Moen Scott, Vo Alex, Ho Johnny C

机构信息

Department of Industrial, Manufacturing and Systems Engineering, The University of Texas, El Paso, TX 79968, USA.

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA.

出版信息

Diagnostics (Basel). 2024 Aug 6;14(16):1699. doi: 10.3390/diagnostics14161699.

Abstract

The class activation map (CAM) represents the neural-network-derived region of interest, which can help clarify the mechanism of the convolutional neural network's determination of any class of interest. In medical imaging, it can help medical practitioners diagnose diseases like COVID-19 or pneumonia by highlighting the suspicious regions in Computational Tomography (CT) or chest X-ray (CXR) film. Many contemporary deep learning techniques only focus on COVID-19 classification tasks using CXRs, while few attempt to make it explainable with a saliency map. To fill this research gap, we first propose a VGG-16-architecture-based deep learning approach in combination with image enhancement, segmentation-based region of interest (ROI) cropping, and data augmentation steps to enhance classification accuracy. Later, a multi-layer Gradient CAM (ML-Grad-CAM) algorithm is integrated to generate a class-specific saliency map for improved visualization in CXR images. We also define and calculate a Severity Assessment Index (SAI) from the saliency map to quantitatively measure infection severity. The trained model achieved an accuracy score of 96.44% for the three-class CXR classification task, i.e., COVID-19, pneumonia, and normal (healthy patients), outperforming many existing techniques in the literature. The saliency maps generated from the proposed ML-GRAD-CAM algorithm are compared with the original Gran-CAM algorithm.

摘要

类激活映射(CAM)表示神经网络衍生的感兴趣区域,它有助于阐明卷积神经网络对任何感兴趣类别的判定机制。在医学成像中,它可以通过突出计算机断层扫描(CT)或胸部X光(CXR)片中的可疑区域,帮助医生诊断COVID-19或肺炎等疾病。许多当代深度学习技术仅专注于使用CXR进行COVID-19分类任务,而很少尝试用显著性映射使其具有可解释性。为了填补这一研究空白,我们首先提出一种基于VGG-16架构的深度学习方法,结合图像增强、基于分割的感兴趣区域(ROI)裁剪和数据增强步骤,以提高分类准确率。随后,集成了多层梯度类激活映射(ML-Grad-CAM)算法,以生成特定类别的显著性映射,用于改善CXR图像中的可视化效果。我们还从显著性映射中定义并计算了严重程度评估指数(SAI),以定量测量感染严重程度。对于三类CXR分类任务,即COVID-19、肺炎和正常(健康患者),训练后的模型准确率达到了96.44%,优于文献中的许多现有技术。将所提出的ML-GRAD-CAM算法生成的显著性映射与原始的Gran-CAM算法进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb4/11353848/f4dccc50a5c4/diagnostics-14-01699-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验