Yallew Teferi Sitotaw, Belfiore Nicola Pio, Bagolini Alvise, Pantano Maria F
Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy.
Micro Nano Facility, Fondazione Bruno Kessler, 38123 Trento, Italy.
Micromachines (Basel). 2022 Aug 25;13(9):1391. doi: 10.3390/mi13091391.
Microgrippers are promising tools for micro-manipulation and characterization of cells. In this paper, a biocompatible electro-thermally actuated microgripper with rotary capacitive position sensor is presented. To overcome the limited displacement possibilities usually provided by electrothermal actuators and to achieve the desired tweezers output displacement, conjugate surface flexure hinges (CSFH) are adopted. The microgripper herein reported can in principle manipulate biological samples in the size range between 15 and 120 µm. A kinematics modeling approach based on the pseudo-rigid-body-method (PRBM) is applied to describe the microgripper's working mechanism, and analytical modeling, based on finite elements method (FEM), is used to optimize the electrothermal actuator design and the heat dissipation mechanism. Finally, FEM-based simulations are carried out to verify the microgripper, the electrothermal actuator and heat dissipation mechanism performance, and to assess the validity of the analytical modeling.
微夹钳是用于细胞微操作和表征的很有前景的工具。本文提出了一种带有旋转电容式位置传感器的生物相容性电热驱动微夹钳。为克服电热致动器通常提供的有限位移可能性并实现所需的镊子输出位移,采用了共轭表面挠曲铰链(CSFH)。本文报道的微夹钳原则上可操作尺寸范围在15至120微米之间的生物样品。应用基于伪刚体法(PRBM)的运动学建模方法来描述微夹钳的工作机制,并使用基于有限元法(FEM)的解析建模来优化电热致动器设计和散热机制。最后,进行基于有限元法的模拟以验证微夹钳、电热致动器和散热机制的性能,并评估解析建模的有效性。