Suppr超能文献

相似文献

1
2
Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins.
Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2545-2554. doi: 10.1016/j.bbagen.2018.07.028. Epub 2018 Jul 26.
4
Functional changes of OsTrxm from reductase to molecular chaperone under heat shock stress.
Plant Physiol Biochem. 2023 Oct;203:108005. doi: 10.1016/j.plaphy.2023.108005. Epub 2023 Sep 7.
5
Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana.
New Phytol. 2011 Aug;191(3):692-705. doi: 10.1111/j.1469-8137.2011.03734.x. Epub 2011 May 12.
6
Molecular chaperone function of Arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin.
Biochem Biophys Res Commun. 2014 Jan 3;443(1):18-21. doi: 10.1016/j.bbrc.2013.11.034. Epub 2013 Nov 20.
7
Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5978-83. doi: 10.1073/pnas.0811231106. Epub 2009 Mar 17.
10
S-nitrosylation switches the Arabidopsis redox sensor protein, QSOX1, from an oxidoreductase to a molecular chaperone under heat stress.
Plant Physiol Biochem. 2024 Jan;206:108219. doi: 10.1016/j.plaphy.2023.108219. Epub 2023 Nov 28.

引用本文的文献

1
Plant-aphid interactions: recent trends in plant resistance to aphids.
Stress Biol. 2025 Apr 29;5(1):28. doi: 10.1007/s44154-025-00214-z.
3
Evolutionary adaptation under climate change: sp. demonstrates potential to adapt to warming.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2418199122. doi: 10.1073/pnas.2418199122. Epub 2025 Jan 7.
4
Evolutionary adaptation under climate change: sp. demonstrates potential to adapt to warming.
bioRxiv. 2024 Sep 6:2024.08.23.609454. doi: 10.1101/2024.08.23.609454.
5
The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside.
Probiotics Antimicrob Proteins. 2024 Dec;16(6):2269-2304. doi: 10.1007/s12602-024-10354-9. Epub 2024 Sep 3.
6
Redox dynamics in seeds of spp: unraveling adaptation strategies of different seed categories.
Front Plant Sci. 2024 Jul 24;15:1430695. doi: 10.3389/fpls.2024.1430695. eCollection 2024.
7
Antifungal Action of TCP21 via Induction of Oxidative Stress and Apoptosis.
Antioxidants (Basel). 2023 Sep 15;12(9):1767. doi: 10.3390/antiox12091767.

本文引用的文献

1
Heat-Stable Hazelnut Profilin: Molecular Dynamics Simulations and Immunoinformatics Analysis.
Polymers (Basel). 2020 Aug 5;12(8):1742. doi: 10.3390/polym12081742.
2
Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection.
Annu Rev Virol. 2020 Sep 29;7(1):351-370. doi: 10.1146/annurev-virology-010320-072410. Epub 2020 May 26.
3
Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins.
Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2545-2554. doi: 10.1016/j.bbagen.2018.07.028. Epub 2018 Jul 26.
4
Structure and functions of profilins.
Biophys Rev. 2009 Jul;1(2):71-81. doi: 10.1007/s12551-009-0010-y. Epub 2009 Jun 4.
5
The enemy within: phloem-limited pathogens.
Mol Plant Pathol. 2018 Jan;19(1):238-254. doi: 10.1111/mpp.12526. Epub 2017 Mar 9.
6
Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.
Biochim Biophys Acta. 2016 Aug;1864(8):991-1002. doi: 10.1016/j.bbapap.2016.03.014. Epub 2016 Mar 28.
8
Peptides and small molecules of the plant-pathogen apoplastic arena.
Front Plant Sci. 2014 Nov 28;5:677. doi: 10.3389/fpls.2014.00677. eCollection 2014.
10
The role of viperin in the innate antiviral response.
J Mol Biol. 2014 Mar 20;426(6):1210-9. doi: 10.1016/j.jmb.2013.10.019. Epub 2013 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验