Suppr超能文献

代谢组学中的细枝末节:提取与分析中的假象

Trivialities in metabolomics: Artifacts in extraction and analysis.

作者信息

Verpoorte R, Kim H K, Choi Y H

机构信息

Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The, Netherlands.

College of Pharmacy, Kyung Hee Univeristy, Seoul, South Korea.

出版信息

Front Mol Biosci. 2022 Sep 8;9:972190. doi: 10.3389/fmolb.2022.972190. eCollection 2022.

Abstract

The aim of this review is to show the risks of artifact formation in metabolomics analyses. Metabolomics has developed in a major tool in system biology approaches to unravel the metabolic networks that are the basis of life. Presently TLC, LC-MS, GC-MS, MS-MS and nuclear magnetic resonance are applied to analyze the metabolome of all kind of biomaterials. These analytical methods require robust preanalytical protocols to extract the small molecules from the biomatrix. The quality of the metabolomics analyses depends on protocols for collecting and processing of the biomaterial, including the methods for drying, grinding and extraction. Also the final preparation of the samples for instrumental analysis is crucial for highly reproducible analyses. The risks of artifact formation in these steps are reviewed from the point of view of the commonly used solvents. Examples of various artifacts formed through chemical reactions between solvents or contaminations with functional groups in the analytes are discussed. These reactions involve, for example, the formation of esters, -esterifications, hemiacetal and acetal formation, N-oxidations, and the formation of carbinolamines. It concerns chemical reactions with hydroxyl-, aldehyde-, keto-, carboxyl-, ester-, and amine functional groups. In the analytical steps, artifacts in LC may come from the stationary phase or reactions of the eluent with analytes. Differences between the solvent of the injected sample and the LC-mobile phase may cause distortions of the retention of analytes. In all analytical methods, poorly soluble compounds will be in all samples at saturation level, thus hiding a potential marker function. Finally a full identification of compounds remains a major hurdle in metabolomics, it requires a full set of spectral data, including methods for confirming the absolute stereochemistry. The putative identifications found in supplemental data of many studies, unfortunately, often become "truly" identified compounds in papers citing these results. Proper validation of the protocols for preanalytical and analytical procedures is essential for reproducible analyses in metabolomics.

摘要

本综述的目的是展示代谢组学分析中产生伪像的风险。代谢组学已发展成为系统生物学方法中的一项主要工具,用于揭示作为生命基础的代谢网络。目前,薄层色谱法(TLC)、液相色谱 - 质谱联用(LC-MS)、气相色谱 - 质谱联用(GC-MS)、串联质谱(MS-MS)和核磁共振(NMR)被用于分析各类生物材料的代谢组。这些分析方法需要稳健的分析前方案,以便从生物基质中提取小分子。代谢组学分析的质量取决于生物材料的收集和处理方案,包括干燥、研磨和提取方法。同样,用于仪器分析的样品最终制备对于实现高度可重复的分析也至关重要。从常用溶剂的角度对这些步骤中产生伪像的风险进行了综述。讨论了通过溶剂之间的化学反应或分析物中官能团污染形成各种伪像的例子。这些反应包括例如酯的形成、酯化反应、半缩醛和缩醛的形成、N-氧化以及氨基醇的形成。它涉及与羟基、醛基、酮基、羧基、酯基和胺基官能团的化学反应。在分析步骤中,液相色谱中的伪像可能来自固定相或洗脱液与分析物的反应。进样样品的溶剂与液相色谱流动相之间的差异可能导致分析物保留的扭曲。在所有分析方法中,难溶性化合物在所有样品中都处于饱和水平,从而掩盖了潜在的标记功能。最后,化合物的完全鉴定仍然是代谢组学中的一个主要障碍,它需要一整套光谱数据,包括确认绝对立体化学的方法。不幸的是,许多研究补充数据中发现的推定鉴定结果,在引用这些结果的论文中常常变成“真正”鉴定的化合物。对分析前和分析程序的方案进行适当验证对于代谢组学中可重复的分析至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d04/9493124/ef9b1e9b5d0d/fmolb-09-972190-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验