Suppr超能文献

巴西南部某城市新冠肺炎住院患者的机器学习与共病网络分析

Machine learning and comorbidity network analysis for hospitalized patients with COVID-19 in a city in Southern Brazil.

作者信息

Passarelli-Araujo Hemanoel, Passarelli-Araujo Hisrael, Urbano Mariana R, Pescim Rodrigo R

机构信息

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

Departamento de Demografia, Faculdade de Ciências Econômicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

出版信息

Smart Health (Amst). 2022 Dec;26:100323. doi: 10.1016/j.smhl.2022.100323. Epub 2022 Sep 20.

Abstract

The large amount of data generated during the COVID-19 pandemic requires advanced tools for the long-term prediction of risk factors associated with COVID-19 mortality with higher accuracy. Machine learning (ML) methods directly address this topic and are essential tools to guide public health interventions. Here, we used ML to investigate the importance of demographic and clinical variables on COVID-19 mortality. We also analyzed how comorbidity networks are structured according to age groups. We conducted a retrospective study of COVID-19 mortality with hospitalized patients from Londrina, Parana, Brazil, registered in the database for severe acute respiratory infections (SIVEP-Gripe), from January 2021 to February 2022. We tested four ML models to predict the COVID-19 outcome: Logistic Regression, Support Vector Machine, Random Forest, and XGBoost. We also constructed a comorbidity network to investigate the impact of co-occurring comorbidities on COVID-19 mortality. Our study comprised 8358 hospitalized patients, of whom 2792 (33.40%) died. The XGBoost model achieved excellent performance (ROC-AUC = 0.90). Both permutation method and SHAP values highlighted the importance of age, ventilatory support status, and intensive care unit admission as key features in predicting COVID-19 outcomes. The comorbidity networks for old deceased patients are denser than those for young patients. In addition, the co-occurrence of heart disease and diabetes may be the most important combination to predict COVID-19 mortality, regardless of age and sex. This work presents a valuable combination of machine learning and comorbidity network analysis to predict COVID-19 outcomes. Reliable evidence on this topic is crucial for guiding the post-pandemic response and assisting in COVID-19 care planning and provision.

摘要

在新冠疫情期间产生的大量数据需要先进工具,以便更准确地长期预测与新冠死亡率相关的风险因素。机器学习(ML)方法直接针对这一主题,是指导公共卫生干预措施的重要工具。在此,我们使用机器学习来研究人口统计学和临床变量对新冠死亡率的重要性。我们还分析了共病网络如何根据年龄组构建。我们对2021年1月至2022年2月在巴西巴拉那州隆德里纳登记在严重急性呼吸道感染数据库(SIVEP-Gripe)中的新冠住院患者死亡率进行了回顾性研究。我们测试了四种机器学习模型来预测新冠结果:逻辑回归、支持向量机、随机森林和XGBoost。我们还构建了一个共病网络,以研究并发共病对新冠死亡率的影响。我们的研究包括8358名住院患者,其中2792人(33.40%)死亡。XGBoost模型表现出色(ROC-AUC = 0.90)。排列法和SHAP值都强调了年龄、通气支持状态和重症监护病房入住作为预测新冠结果的关键特征的重要性。老年死亡患者的共病网络比年轻患者的更密集。此外,无论年龄和性别,心脏病和糖尿病的并发可能是预测新冠死亡率最重要的组合。这项工作展示了机器学习和共病网络分析相结合以预测新冠结果的宝贵方法。关于这一主题的可靠证据对于指导疫情后应对措施以及协助新冠护理规划和提供至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a1/9485420/b3b92c423225/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验