Cheng Cheng, Wang Wei-Bin, Sun Meng-Lin, Tang Rui-Qi, Bai Long, Alper Hal S, Zhao Xin-Qing
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
School of Life Sciences, Hefei Normal University, Hefei, China.
Front Microbiol. 2022 Sep 8;13:960114. doi: 10.3389/fmicb.2022.960114. eCollection 2022.
Production of biofuels and biochemicals from xylose using yeast cell factory is of great interest for lignocellulosic biorefinery. Our previous studies revealed that a natural yeast isolate YB-2625 has superior xylose-fermenting ability. Through integrative omics analysis, , which encodes a transcription regulator as well as a subunit of chromatin modifying histone acetyltransferase complexes was revealed to regulate xylose metabolism. Deletion of in YRH396h, which is the haploid version of the recombinant yeast using YB-2625 as the host strain, improved xylose consumption by 28.6%. Comparative transcriptome analysis revealed that deletion down-regulated genes related to mitochondrial function, TCA cycle, ATP biosynthesis, respiration, as well as NADH generation. In addition, the deletion mutant also showed transcriptional changes in amino acid biosynthesis genes. Further analysis of intracellular amino acid content confirmed the effect of on amino acid accumulation during xylose utilization. Our results indicated that is one of the core nodes for coordinated regulation of carbon and nitrogen metabolism in the recombinant This work reveals novel function of Ngg1p in yeast metabolism and provides basis for developing robust yeast strains to produce ethanol and biochemicals using lignocellulosic biomass.
利用酵母细胞工厂从木糖生产生物燃料和生物化学品对于木质纤维素生物精炼具有重大意义。我们之前的研究表明,天然酵母分离株YB - 2625具有卓越的木糖发酵能力。通过整合组学分析,发现编码转录调节因子以及染色质修饰组蛋白乙酰转移酶复合物亚基的[具体基因名称未给出]可调节木糖代谢。在以YB - 2625为宿主菌株构建的重组酵母的单倍体形式YRH396h中缺失[具体基因名称未给出],木糖消耗提高了28.6%。比较转录组分析表明,缺失[具体基因名称未给出]会下调与线粒体功能、三羧酸循环、ATP生物合成、呼吸以及NADH生成相关的基因。此外,缺失[具体基因名称未给出]的突变体在氨基酸生物合成基因方面也表现出转录变化。对细胞内氨基酸含量的进一步分析证实了[具体基因名称未给出]在木糖利用过程中对氨基酸积累的影响。我们的结果表明,[具体基因名称未给出]是重组酵母中碳氮代谢协同调控的核心节点之一。这项工作揭示了Ngg1p在酵母代谢中的新功能,并为开发利用木质纤维素生物质生产乙醇和生物化学品的健壮酵母菌株提供了依据。