Suppr超能文献

机器学习预测 C-H 键均裂解离能:基于实验数据的 DFT 模型校准。

Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data.

机构信息

Henan Engineering Research Center of Industrial Circulating Water Treatment, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan University, Kaifeng, 475004, P.R. China.

LAQV and REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.

出版信息

Mol Inform. 2023 Jan;42(1):e2200193. doi: 10.1002/minf.202200193. Epub 2022 Oct 19.

Abstract

Random Forest (RF) QSPR models were developed with a data set of homolytic bond dissociation energies (BDE) previously calculated by B3LYP/6-311++G(d,p)//DFTB for 2263 sp3C-H covalent bonds. The best set of attributes consisted in 114 descriptors of the carbon atom (counts of atom types in 5 spheres around the kernel atom and ring descriptors). The optimized model predicted the DFT-calculated BDE of an independent test set of 224 bonds with MAE=2.86 kcal/mol. A new data set of 409 bonds from the iBonD database (http://ibond.nankai.edu.cn) was predicted by the RF with a modest MAE (5.36 kcal/mol) but a relatively high R (0.75) against experimental energies. A prediction scheme was explored that corrects the RF prediction with the average deviation observed for the k nearest neighbours (KNN) in an additional memory of experimental data. The corrected predictions achieved MAE=2.22 kcal/mol for an independent test set of 145 bonds and the corresponding experimental bond energies.

摘要

随机森林 (RF) QSPR 模型是用一组先前由 B3LYP/6-311++G(d,p)//DFTB 计算的 2263 个 sp3C-H 共价键的均裂键离解能 (BDE) 数据进行开发的。最佳属性集由碳原子的 114 个描述符组成(在核心原子周围的 5 个球中的原子类型计数和环描述符)。优化后的模型预测了一个独立测试集的 224 个键的 DFT 计算 BDE,平均误差 (MAE)=2.86 kcal/mol。通过 RF 对来自 iBonD 数据库(http://ibond.nankai.edu.cn)的 409 个新键进行了预测,其平均误差 (MAE) 为 5.36 kcal/mol,但与实验能量相比,R 值相对较高 (0.75)。探索了一种预测方案,即用额外的实验数据记忆中 k 个最近邻居 (KNN) 的平均偏差来校正 RF 预测。对于 145 个独立测试集的键和相应的实验键能,校正后的预测的平均误差为 2.22 kcal/mol。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0593/10078411/1348ac04aa5a/MINF-42-0-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验