Suppr超能文献

通过黏附分子的机械转导:在调节干细胞微环境中的新作用。

Mechanotransduction through adhesion molecules: Emerging roles in regulating the stem cell niche.

作者信息

Lim Ryan, Banerjee Avinanda, Biswas Ritusree, Chari Anana Nandakumar, Raghavan Srikala

机构信息

A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (ASTAR) 8A Biomedical Grove, Singapore, Singapore.

Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India.

出版信息

Front Cell Dev Biol. 2022 Sep 12;10:966662. doi: 10.3389/fcell.2022.966662. eCollection 2022.

Abstract

Stem cells have been shown to play an important role in regenerative medicine due to their proliferative and differentiation potential. The challenge, however, lies in regulating and controlling their potential for this purpose. Stem cells are regulated by growth factors as well as an array of biochemical and mechanical signals. While the role of biochemical signals and growth factors in regulating stem cell homeostasis is well explored, the role of mechanical signals has only just started to be investigated. Stem cells interact with their niche or to other stem cells via adhesion molecules that eventually transduce mechanical cues to maintain their homeostatic function. Here, we present a comprehensive review on our current understanding of the influence of the forces perceived by cell adhesion molecules on the regulation of stem cells. Additionally, we provide insights on how this deeper understanding of mechanobiology of stem cells has translated toward therapeutics.

摘要

由于干细胞具有增殖和分化潜力,已被证明在再生医学中发挥重要作用。然而,挑战在于为此目的对其潜力进行调节和控制。干细胞受生长因子以及一系列生化和机械信号的调节。虽然生化信号和生长因子在调节干细胞稳态中的作用已得到充分研究,但机械信号的作用才刚刚开始被研究。干细胞通过粘附分子与它们的生态位或其他干细胞相互作用,这些粘附分子最终转导机械信号以维持其稳态功能。在此,我们对目前对细胞粘附分子所感知的力对干细胞调节的影响的理解进行全面综述。此外,我们还深入探讨了对干细胞力学生物学的这一深入理解如何转化为治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0259/9511051/af706f64d0a6/fcell-10-966662-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验