Suppr超能文献

神经生物学对双重超常的研究进展:回路、细胞与分子。

Neurobiological insights into twice-exceptionality: Circuits, cells, and molecules.

机构信息

Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.

Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA.

出版信息

Neurobiol Learn Mem. 2022 Nov;195:107684. doi: 10.1016/j.nlm.2022.107684. Epub 2022 Sep 26.

Abstract

Twice-exceptional learners face a unique set of challenges arising from the intersection of extraordinary talent and disability. Neurobiology research has the capacity to complement pedagogical research and provide support for twice-exceptional learners. Very few studies have attempted to specifically address the neurobiological underpinnings of twice-exceptionality. However, neurobiologists have built a broad base of knowledge in nervous system function spanning from the level of neural circuits to the molecular basis of behavior. It is known that distinct neural circuits mediate different neural functions, which suggests that 2e learning may result from enhancement in one circuit and disruption in another. Neural circuits are known to adapt and change in response to experience, a cellular process known as neuroplasticity. Plasticity is controlled by a bidirectional connection between the synapse, where neural signals are received, and the nucleus, where regulated gene expression can return to alter synaptic function. Complex molecular mechanisms compose this connection in distinct neural circuits, and genetic alterations in these mechanisms are associated with both memory enhancements and psychiatric disorder. Understanding the consequences of these changes at the molecular, cellular, and circuit levels will provide critical insights into the neurobiological bases of twice-exceptionality.

摘要

双重天赋学习者面临着一系列独特的挑战,这些挑战源于非凡才能和残疾的交集。神经生物学研究有能力补充教学研究,并为双重天赋学习者提供支持。很少有研究试图专门解决双重天赋的神经生物学基础。然而,神经生物学家已经建立了一个广泛的神经系统功能知识库,从神经回路的水平到行为的分子基础。已知不同的神经回路介导不同的神经功能,这表明 2e 学习可能是由于一个回路的增强和另一个回路的破坏而产生的。神经回路会根据经验进行适应和改变,这是一种被称为神经可塑性的细胞过程。可塑性受突触(接收神经信号的地方)和核(受调控基因表达的地方)之间的双向连接控制,这些基因表达可以返回改变突触功能。复杂的分子机制构成了这些不同神经回路中的连接,这些机制的遗传改变与记忆增强和精神障碍都有关。了解这些变化在分子、细胞和回路水平上的后果,将为双重天赋的神经生物学基础提供关键的见解。

相似文献

2
Neural plasticity and behavior - sixty years of conceptual advances.神经可塑性与行为——六十年的概念进展
J Neurochem. 2016 Oct;139 Suppl 2:179-199. doi: 10.1111/jnc.13580. Epub 2016 Mar 10.
4
Activity-regulated genes as mediators of neural circuit plasticity.活性调节基因作为神经回路可塑性的介质。
Prog Neurobiol. 2011 Aug;94(3):223-37. doi: 10.1016/j.pneurobio.2011.05.002. Epub 2011 May 12.
6
Progress in neural plasticity.神经可塑性的进展。
Sci China Life Sci. 2010 Mar;53(3):322-329. doi: 10.1007/s11427-010-0062-z. Epub 2010 Apr 29.
7
Synapse formation in developing neural circuits.发育中的神经回路中的突触形成。
Curr Top Dev Biol. 2009;87:53-79. doi: 10.1016/S0070-2153(09)01202-2.

引用本文的文献

本文引用的文献

1
Memory suppressor genes: Modulating acquisition, consolidation, and forgetting.记忆抑制基因:调节获取、巩固和遗忘。
Neuron. 2021 Oct 20;109(20):3211-3227. doi: 10.1016/j.neuron.2021.08.001. Epub 2021 Aug 26.
6
Epigenetics and memory: an expanded role for chromatin dynamics.表观遗传学与记忆:染色质动力学的扩展作用。
Curr Opin Neurobiol. 2021 Apr;67:58-65. doi: 10.1016/j.conb.2020.08.007. Epub 2020 Sep 6.
10
iPSC modeling of rare pediatric disorders.罕见儿科疾病的诱导多能干细胞建模
J Neurosci Methods. 2020 Feb 15;332:108533. doi: 10.1016/j.jneumeth.2019.108533. Epub 2019 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验