Suppr超能文献

基于蛋白质-蛋白质相互作用网络分割的小蛋白复合物预测算法。

Small protein complex prediction algorithm based on protein-protein interaction network segmentation.

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian, China.

School of Chemical Engineering, Dalian University of Technology, Dalian, China.

出版信息

BMC Bioinformatics. 2022 Sep 30;23(1):405. doi: 10.1186/s12859-022-04960-z.

Abstract

BACKGROUND

Identifying protein complexes from protein-protein interaction network is one of significant tasks in the postgenome era. Protein complexes, none of which exceeds 10 in size play an irreplaceable role in life activities and are also a hotspot of scientific research, such as PSD-95, CD44, PKM2 and BRD4. And in MIPS, CYC2008, SGD, Aloy and TAP06 datasets, the proportion of small protein complexes is over 75%. But up to now, protein complex identification methods do not perform well in the field of small protein complexes.

RESULTS

In this paper, we propose a novel method, called BOPS. It is a three-step procedure. Firstly, it calculates the balanced weights to replace the original weights. Secondly, it divides the graphs larger than MAXP until the original PPIN is divided into small PPINs. Thirdly, it enumerates the connected subset of each small PPINs, identifies potential protein complexes based on cohesion and removes those that are similar.

CONCLUSIONS

In four yeast PPINs, experimental results have shown that BOPS has an improvement of about 5% compared with the SOTA model. In addition, we constructed a weighted Homo sapiens PPIN based on STRINGdb and BioGRID, and BOPS gets the best result in it. These results give new insights into the identification of small protein complexes, and the weighted Homo sapiens PPIN provides more data for related research.

摘要

背景

从蛋白质-蛋白质相互作用网络中识别蛋白质复合物是后基因组时代的重要任务之一。蛋白质复合物的大小均不超过 10,它们在生命活动中起着不可替代的作用,也是科学研究的热点,如 PSD-95、CD44、PKM2 和 BRD4。在 MIPS、CYC2008、SGD、Aloy 和 TAP06 数据集,小蛋白质复合物的比例超过 75%。但到目前为止,蛋白质复合物识别方法在小蛋白质复合物领域的表现并不理想。

结果

本文提出了一种新的方法,称为 BOPS。它是一个三步过程。首先,它计算平衡权重以替代原始权重。其次,它将大于 MAXP 的图分割,直到将原始 PPIN 分割成小的 PPIN。第三,它枚举每个小 PPIN 的连通子集,基于内聚性识别潜在的蛋白质复合物,并去除那些相似的。

结论

在四个酵母 PPIN 中,实验结果表明,BOPS 与 SOTA 模型相比,提高了约 5%。此外,我们基于 STRINGdb 和 BioGRID 构建了一个加权人类 PPIN,BOPS 在其中得到了最佳结果。这些结果为小蛋白质复合物的识别提供了新的见解,加权人类 PPIN 为相关研究提供了更多的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e686/9524060/92791bef55f4/12859_2022_4960_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验