Suppr超能文献

基于融合的机器学习方法,利用脑磁图信号检测幼儿自闭症。

A Fusion-Based Machine Learning Approach for Autism Detection in Young Children Using Magnetoencephalography Signals.

机构信息

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.

Faculty of Science and Engineering, Waseda University, Tokyo, Japan.

出版信息

J Autism Dev Disord. 2023 Dec;53(12):4830-4848. doi: 10.1007/s10803-022-05767-w. Epub 2022 Oct 3.

Abstract

In this study, we aimed to find biomarkers of autism in young children. We recorded magnetoencephalography (MEG) in thirty children (4-7 years) with autism and thirty age, gender-matched controls while they were watching cartoons. We focused on characterizing neural oscillations by amplitude (power spectral density, PSD) and phase (preferred phase angle, PPA). Machine learning based classifier showed a higher classification accuracy (88%) for PPA features than PSD features (82%). Further, by a novel fusion method combining PSD and PPA features, we achieved an average classification accuracy of 94% and 98% for feature-level and score-level fusion, respectively. These findings reveal discriminatory patterns of neural oscillations of autism in young children and provide novel insight into autism pathophysiology.

摘要

在这项研究中,我们旨在寻找自闭症儿童的生物标志物。我们对三十名自闭症儿童(4-7 岁)和三十名年龄、性别匹配的对照组儿童在观看动画片时进行了脑磁图(MEG)记录。我们专注于通过振幅(功率谱密度,PSD)和相位(优先相位角,PPA)来描述神经振荡。基于机器学习的分类器显示,PPA 特征的分类准确性(88%)高于 PSD 特征(82%)。此外,通过一种新的融合方法结合 PSD 和 PPA 特征,我们分别在特征级和评分级融合上实现了 94%和 98%的平均分类准确性。这些发现揭示了自闭症儿童神经振荡的区分模式,并为自闭症的病理生理学提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44a5/10627976/4284c32b3141/10803_2022_5767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验