Suppr超能文献

一种用于双频调制的双眼视觉稳态视觉诱发电位脑机接口范式。

A Binocular Vision SSVEP Brain-Computer Interface Paradigm for Dual-Frequency Modulation.

作者信息

Sun Yike, Liang Liyan, Sun Jingnan, Chen Xiaogang, Tian Runfa, Chen Yuanfang, Zhang Lijian, Gao Xiaorong

出版信息

IEEE Trans Biomed Eng. 2023 Apr;70(4):1172-1181. doi: 10.1109/TBME.2022.3212192. Epub 2023 Mar 21.

Abstract

OBJECTIVE

This study presents a novel brain-computer interface paradigm of dual-frequency modulated steady-state visual evoked potential (SSVEP), aiming to suppress the unpredictable intermodulation components in current applications. This paradigm is especially suitable for training-free scenarios.

APPROACH

This study built a dual-frequency binocular vision SSVEP brain-computer interface system using circularly polarized light technology. Two experiments, including a 6-target offline experiment and a 40-target online experiment, were taken with this system. Meanwhile, an improved algorithm filter bank dual-frequency canonical correlation analysis (FBDCCA) was presented for the dual-frequency SSVEP paradigm.

MAIN RESULTS

Energy analysis was conducted for 9 subjects in the 6-target dual-frequency offline experiment, among which the signal-to-noise ratio of target frequency components have increased by 2 dB compared to the one of unpredictable intermodulation components. Subsequently, the online experiment with 40 targets was conducted with 12 subjects. With this new dual-frequency paradigm, the online training-free experiment's average information transmission rate (ITR) reached 104.56 ± 15.74 bits/min, which was almost twice as fast as the current best dual-frequency paradigm. And the average information transfer rate for offline training analysis of this new paradigm was 180.87 ± 17.88 bits/min.

SIGNIFICANCE

These results demonstrate that this new dual-frequency SSVEP brain-computer interface paradigm can suppress the unpredictable intermodulation harmonics and generate higher quality responses while completing dual-frequency encoding. Moreover, its performance shows high ITR in applications both with and without training. It is thus believed that this paradigm is competent for achieving large target numbers in brain-computer interface systems and has more possible practices.

摘要

目的

本研究提出了一种新型的双频调制稳态视觉诱发电位(SSVEP)脑机接口范式,旨在抑制当前应用中不可预测的互调成分。该范式特别适用于无需训练的场景。

方法

本研究利用圆偏振光技术构建了双频双目视觉SSVEP脑机接口系统。使用该系统进行了两项实验,包括一个6目标离线实验和一个40目标在线实验。同时,针对双频SSVEP范式提出了一种改进算法——滤波器组双频典型相关分析(FBDCCA)。

主要结果

对6目标双频离线实验中的9名受试者进行了能量分析,其中目标频率成分的信噪比相比不可预测的互调成分提高了2 dB。随后,对12名受试者进行了40目标的在线实验。采用这种新的双频范式,在线无需训练实验的平均信息传输率(ITR)达到104.56±15.74比特/分钟,几乎是当前最佳双频范式的两倍。并且该新范式离线训练分析的平均信息传输率为180.87±17.88比特/分钟。

意义

这些结果表明,这种新的双频SSVEP脑机接口范式在完成双频编码时能够抑制不可预测的互调谐波并产生更高质量的响应。此外,其性能在有无训练的应用中均显示出高ITR。因此,相信该范式能够在脑机接口系统中实现大量目标,并且具有更多可能的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验