Suppr超能文献

双频 SSVEP 脑-机接口的大型 EEG 研究

Dual-Alpha: a large EEG study for dual-frequency SSVEP brain-computer interface.

机构信息

The School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

The China Academy of Information and Communications Technology, Beijing 100191, China.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae041.

Abstract

BACKGROUND

The domain of brain-computer interface (BCI) technology has experienced significant expansion in recent years. However, the field continues to face a pivotal challenge due to the dearth of high-quality datasets. This lack of robust datasets serves as a bottleneck, constraining the progression of algorithmic innovations and, by extension, the maturation of the BCI field.

FINDINGS

This study details the acquisition and compilation of electroencephalogram data across 3 distinct dual-frequency steady-state visual evoked potential (SSVEP) paradigms, encompassing over 100 participants. Each experimental condition featured 40 individual targets with 5 repetitions per target, culminating in a comprehensive dataset consisting of 21,000 trials of dual-frequency SSVEP recordings. We performed an exhaustive validation of the dataset through signal-to-noise ratio analyses and task-related component analysis, thereby substantiating its reliability and effectiveness for classification tasks.

CONCLUSIONS

The extensive dataset presented is set to be a catalyst for the accelerated development of BCI technologies. Its significance extends beyond the BCI sphere and holds considerable promise for propelling research in psychology and neuroscience. The dataset is particularly invaluable for discerning the complex dynamics of binocular visual resource distribution.

摘要

背景

脑机接口(BCI)技术领域近年来经历了显著的扩展。然而,由于高质量数据集的缺乏,该领域仍然面临着关键的挑战。这种缺乏稳健数据集的情况成为了一个瓶颈,限制了算法创新的进展,并因此限制了 BCI 领域的成熟。

发现

本研究详细介绍了在三个不同的双频稳态视觉诱发电位(SSVEP)范式中获取和编译脑电图数据的情况,涵盖了超过 100 名参与者。每个实验条件都有 40 个个体目标,每个目标重复 5 次,最终得到一个包含 21000 次双频 SSVEP 记录的综合数据集。我们通过信噪比分析和任务相关成分分析对数据集进行了全面验证,从而证明了其在分类任务中的可靠性和有效性。

结论

所呈现的广泛数据集将成为 BCI 技术快速发展的催化剂。它的意义不仅限于 BCI 领域,对于推动心理学和神经科学的研究也具有相当大的潜力。该数据集对于辨别双眼视觉资源分配的复杂动态特别有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc7a/11304967/18ee4b63a7e1/giae041fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验