Suppr超能文献

利用体外组装的核糖核蛋白的 CRISPR-Cas9 系统调控全局调控因子可提高 的次生代谢产物的产量。

Manipulation of the Global Regulator Upregulates Secondary Metabolite Production in Using CRISPR-Cas9 with In Vitro Assembled Ribonucleoproteins.

机构信息

Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.

Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

出版信息

ACS Chem Biol. 2022 Oct 21;17(10):2828-2835. doi: 10.1021/acschembio.2c00456. Epub 2022 Oct 5.

Abstract

Genome sequencing of filamentous fungi has demonstrated that most secondary metabolite biosynthetic gene clusters (BGCs) are silent under standard laboratory conditions. In this work, we have established an in vitro CRISPR-Cas9 system in . To activate otherwise silent BGCs, we deleted the negative transcriptional regulator . Deletion of (Δ) resulted in differential production of 17 SMs in total when the strain was cultivated on potato dextrose media (PDA). Nine out of fifteen of these SMs were fully characterized, including emodin (), physcion (), sulochrin (), physcion bianthrone (), 14--demethylsulochrin (), (/)-emodin bianthrone ( and ), and (/)-emodin physcion bianthrone ( and ). These compounds were all found to be produced by the same polyketide synthase (PKS) BGC. We then performed a secondary knockout targeting this PKS cluster in the Δ background. The metabolite profile of the dual-knockout strain revealed new metabolites that were not previously detected in the Δ parent strain. Two additional SMs were purified from the dual-knockout strain and were characterized as aspergillus acid B () and a structurally related but previously unidentified compound (). For the first time, this work presents a facile genetic system capable of targeted gene editing in This work also illustrates the utility of performing a dual knockout to eliminate major metabolic products, enabling additional SM discovery.

摘要

丝状真菌的基因组测序表明,大多数次级代谢产物生物合成基因簇(BGCs)在标准实验室条件下是沉默的。在这项工作中,我们在. 中建立了一种体外 CRISPR-Cas9 系统。为了激活原本沉默的 BGCs,我们删除了负转录调节剂. 删除 (Δ)后,当菌株在土豆葡萄糖培养基(PDA)上培养时,总共产生了 17 种 SMs 的差异产物。这 15 种 SMs 中有 9 种得到了充分的表征,包括大黄素()、大黄素甲醚()、大黄素甲醚()、大黄素甲醚()、14--去甲大黄素甲醚()、大黄素大黄素(和)和大黄素大黄素(和)。这些化合物均由相同的聚酮合酶(PKS)BGC 产生。然后,我们针对 Δ 背景中的这个 PKS 簇进行了二次敲除。双敲除菌株的代谢产物谱揭示了在 Δ 亲本菌株中未检测到的新代谢产物。从双敲除菌株中纯化出两种额外的 SM,并鉴定为aspergillus acid B()和一种结构相关但以前未鉴定的化合物()。这是首次在. 中展示了一种能够进行靶向基因编辑的简便遗传系统。这项工作还说明了进行双重敲除以消除主要代谢产物从而实现额外的 SM 发现的实用性。

相似文献

引用本文的文献

5
Synthetic Biology in Natural Product Biosynthesis.天然产物生物合成中的合成生物学
Chem Rev. 2025 Apr 9;125(7):3814-3931. doi: 10.1021/acs.chemrev.4c00567. Epub 2025 Mar 21.

本文引用的文献

4
Using SPAdes De Novo Assembler.使用 SPAdes 从头组装。
Curr Protoc Bioinformatics. 2020 Jun;70(1):e102. doi: 10.1002/cpbi.102.
8
Resistance Gene-Directed Genome Mining of 50 Species.50种物种的抗性基因导向基因组挖掘
mSystems. 2019 May 14;4(4). doi: 10.1128/mSystems.00085-19. eCollection 2019 Jul-Aug.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验