OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany.
Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
Sci Rep. 2022 Oct 6;12(1):16755. doi: 10.1038/s41598-022-21159-7.
Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospective cohort of 206 patients with locally advanced HNSCC treated with primary radiochemotherapy to classify tumour molecular subtypes based on radiomics, develop surrogate radiomics signatures for gene-based signatures related to different biological tumour characteristics and evaluate the potential of combining radiomics features with full-transcriptome data for the prediction of loco-regional control (LRC). Using end-to-end machine-learning, we developed and validated a model to classify tumours of the atypical subtype (AUC [95% confidence interval] 0.69 [0.53-0.83]) based on CT imaging, observed that CT-based radiomics models have limited value as surrogates for six selected gene signatures (AUC < 0.60), and showed that combining a radiomics signature with a transcriptomics signature consisting of two metagenes representing the hedgehog pathway and E2F transcriptional targets improves the prognostic value for LRC compared to both individual sources (validation C-index [95% confidence interval], combined: 0.63 [0.55-0.73] vs radiomics: 0.60 [0.50-0.71] and transcriptomics: 0.59 [0.49-0.69]). These results underline the potential of multi-omics analyses to generate reliable biomarkers for future application in personalized oncology.
局部晚期头颈部鳞状细胞癌(HNSCC)患者可能受益于个体化治疗,这需要能够对肿瘤进行特征描述并预测治疗反应的生物标志物。我们整合了来自 206 例局部晚期 HNSCC 患者的多中心回顾性队列的预处理 CT 放射组学和全转录组数据,这些患者接受了原发性放化疗治疗,基于放射组学对肿瘤分子亚型进行分类,为与不同生物学肿瘤特征相关的基于基因的特征开发替代放射组学特征,并评估放射组学特征与全转录组数据相结合用于预测局部区域控制(LRC)的潜力。我们使用端到端机器学习,开发并验证了一种基于 CT 成像对非典型亚型肿瘤进行分类的模型(AUC[95%置信区间]0.69[0.53-0.83]),观察到 CT 基于的放射组学模型作为六个选定基因特征的替代物的价值有限(AUC<0.60),并表明,将放射组学特征与由两个代表 hedgehog 通路和 E2F 转录靶点的后生基因组成的转录组学特征相结合,可以提高 LRC 的预后价值,与两个单独的来源相比(验证 C-指数[95%置信区间],联合:0.63[0.55-0.73]比放射组学:0.60[0.50-0.71]和转录组学:0.59[0.49-0.69])。这些结果强调了多组学分析在生成可靠的生物标志物以用于未来个性化肿瘤学中的潜在应用。