Suppr超能文献

减轻放射学机器学习中的偏差:2. 模型开发。

Mitigating Bias in Radiology Machine Learning: 2. Model Development.

作者信息

Zhang Kuan, Khosravi Bardia, Vahdati Sanaz, Faghani Shahriar, Nugen Fred, Rassoulinejad-Mousavi Seyed Moein, Moassefi Mana, Jagtap Jaidip Manikrao M, Singh Yashbir, Rouzrokh Pouria, Erickson Bradley J

机构信息

Radiology Informatics Laboratory, Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905.

出版信息

Radiol Artif Intell. 2022 Aug 24;4(5):e220010. doi: 10.1148/ryai.220010. eCollection 2022 Sep.

Abstract

There are increasing concerns about the bias and fairness of artificial intelligence (AI) models as they are put into clinical practice. Among the steps for implementing machine learning tools into clinical workflow, model development is an important stage where different types of biases can occur. This report focuses on four aspects of model development where such bias may arise: data augmentation, model and loss function, optimizers, and transfer learning. This report emphasizes appropriate considerations and practices that can mitigate biases in radiology AI studies. Model, Bias, Machine Learning, Deep Learning, Radiology © RSNA, 2022.

摘要

随着人工智能(AI)模型应用于临床实践,人们对其偏差和公平性的担忧日益增加。在将机器学习工具应用于临床工作流程的步骤中,模型开发是一个重要阶段,可能会出现不同类型的偏差。本报告重点关注模型开发中可能出现此类偏差的四个方面:数据增强、模型和损失函数、优化器以及迁移学习。本报告强调了在放射学人工智能研究中可以减轻偏差的适当考虑因素和做法。模型、偏差、机器学习、深度学习、放射学 © RSNA,2022年

相似文献

1
Mitigating Bias in Radiology Machine Learning: 2. Model Development.减轻放射学机器学习中的偏差:2. 模型开发。
Radiol Artif Intell. 2022 Aug 24;4(5):e220010. doi: 10.1148/ryai.220010. eCollection 2022 Sep.
2
Mitigating Bias in Radiology Machine Learning: 3. Performance Metrics.减轻放射学机器学习中的偏差:3. 性能指标。
Radiol Artif Intell. 2022 Aug 24;4(5):e220061. doi: 10.1148/ryai.220061. eCollection 2022 Sep.
4
Mitigating Bias in Radiology Machine Learning: 1. Data Handling.减轻放射学机器学习中的偏差:1. 数据处理。
Radiol Artif Intell. 2022 Aug 24;4(5):e210290. doi: 10.1148/ryai.210290. eCollection 2022 Sep.

引用本文的文献

本文引用的文献

6
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
8
A Characteristic Chest Radiographic Pattern in the Setting of the COVID-19 Pandemic.COVID-19大流行背景下的一种特征性胸部X线表现模式。
Radiol Cardiothorac Imaging. 2020 Sep 3;2(5):e200280. doi: 10.1148/ryct.2020200280. eCollection 2020 Oct.
10
Models Genesis.模型起源。
Med Image Anal. 2021 Jan;67:101840. doi: 10.1016/j.media.2020.101840. Epub 2020 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验