Zhang Kuan, Khosravi Bardia, Vahdati Sanaz, Faghani Shahriar, Nugen Fred, Rassoulinejad-Mousavi Seyed Moein, Moassefi Mana, Jagtap Jaidip Manikrao M, Singh Yashbir, Rouzrokh Pouria, Erickson Bradley J
Radiology Informatics Laboratory, Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905.
Radiol Artif Intell. 2022 Aug 24;4(5):e220010. doi: 10.1148/ryai.220010. eCollection 2022 Sep.
There are increasing concerns about the bias and fairness of artificial intelligence (AI) models as they are put into clinical practice. Among the steps for implementing machine learning tools into clinical workflow, model development is an important stage where different types of biases can occur. This report focuses on four aspects of model development where such bias may arise: data augmentation, model and loss function, optimizers, and transfer learning. This report emphasizes appropriate considerations and practices that can mitigate biases in radiology AI studies. Model, Bias, Machine Learning, Deep Learning, Radiology © RSNA, 2022.
随着人工智能(AI)模型应用于临床实践,人们对其偏差和公平性的担忧日益增加。在将机器学习工具应用于临床工作流程的步骤中,模型开发是一个重要阶段,可能会出现不同类型的偏差。本报告重点关注模型开发中可能出现此类偏差的四个方面:数据增强、模型和损失函数、优化器以及迁移学习。本报告强调了在放射学人工智能研究中可以减轻偏差的适当考虑因素和做法。模型、偏差、机器学习、深度学习、放射学 © RSNA,2022年