Institute of Computer Science, University of Applied Science Ruhr West, Mülheim an der Ruhr, Germany.
Faculty of Electrical Engineering and Information Technology, Ruhr-University, Bochum, Germany.
J Neural Eng. 2022 Oct 20;19(5). doi: 10.1088/1741-2552/ac9860.
. Accurate decoding of surface electromyography (sEMG) is pivotal for muscle-to-machine-interfaces and their application e.g. rehabilitation therapy. sEMG signals have high inter-subject variability, due to various factors, including skin thickness, body fat percentage, and electrode placement. Deep learning algorithms require long training time and tend to overfit if only few samples are available. In this study, we aim to investigate methods to calibrate deep learning models to a new user when only a limited amount of training data is available.. Two methods are commonly used in the literature, subject-specific modeling and transfer learning. In this study, we investigate the effectiveness of transfer learning using weight initialization for recalibration of two different pretrained deep learning models on new subjects data and compare their performance to subject-specific models. We evaluate two models on three publicly available databases (non invasive adaptive prosthetics database 2-4) and compare the performance of both calibration schemes in terms of accuracy, required training data, and calibration time.. On average over all settings, our transfer learning approach improves 5%-points on the pretrained models without fine-tuning, and 12%-points on the subject-specific models, while being trained for 22% fewer epochs on average. Our results indicate that transfer learning enables faster learning on fewer training samples than user-specific models.. To the best of our knowledge, this is the first comparison of subject-specific modeling and transfer learning. These approaches are ubiquitously used in the field of sEMG decoding. But the lack of comparative studies until now made it difficult for scientists to assess appropriate calibration schemes. Our results guide engineers evaluating similar use cases.
表面肌电图(sEMG)的准确解码对于肌电机器接口及其应用(例如康复治疗)至关重要。sEMG 信号具有很高的个体间可变性,这是由于多种因素造成的,包括皮肤厚度、体脂百分比和电极放置位置。深度学习算法需要较长的训练时间,如果可用的样本很少,它们往往容易过拟合。在本研究中,我们旨在研究在只有有限数量的训练数据可用的情况下,将深度学习模型校准到新用户的方法。
文献中通常使用两种方法,即特定于个体的建模和迁移学习。在本研究中,我们研究了使用权重初始化进行迁移学习的有效性,以便在新主体数据上重新校准两个不同的预训练深度学习模型,并将其性能与特定于个体的模型进行比较。我们在三个公开可用的数据库(非侵入性自适应假肢数据库 2-4)上评估了两个模型,并根据准确性、所需训练数据和校准时间比较了两种校准方案的性能。
平均而言,在所有设置中,我们的迁移学习方法在不进行微调的情况下,使预训练模型提高了 5%,使特定于个体的模型提高了 12%,同时平均训练周期减少了 22%。我们的结果表明,与特定于个体的模型相比,迁移学习可以在更少的训练样本上更快地学习。
据我们所知,这是首次对特定于个体的建模和迁移学习进行比较。这些方法在 sEMG 解码领域被广泛应用。但是,直到现在缺乏比较研究,使得科学家难以评估适当的校准方案。我们的结果为评估类似用例的工程师提供了指导。