Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
Nat Commun. 2022 Oct 7;13(1):5918. doi: 10.1038/s41467-022-33642-w.
Replication errors and various genotoxins cause DNA double-strand breaks (DSBs) where error-prone repair creates genomic mutations, most frequently focal deletions, and defective repair may lead to neurodegeneration. Despite its pathophysiological importance, the extent to which faulty DSB repair alters the genome, and the mechanisms by which mutations arise, have not been systematically examined reflecting ineffective methods. Here, we develop PhaseDel, a computational method to detect focal deletions and characterize underlying mechanisms in single-cell whole genome sequences (scWGS). We analyzed high-coverage scWGS of 107 single neurons from 18 neurotypical individuals of various ages, and found that somatic deletions increased with age and in highly expressed genes in human brain. Our analysis of 50 single neurons from DNA repair-deficient diseases with progressive neurodegeneration (Cockayne syndrome, Xeroderma pigmentosum, and Ataxia telangiectasia) reveals elevated somatic deletions compared to age-matched controls. Distinctive mechanistic signatures and transcriptional associations suggest roles for somatic deletions in neurodegeneration.
复制错误和各种遗传毒物会导致 DNA 双链断裂 (DSB),易错修复会产生基因组突变,最常见的是焦点缺失,而修复缺陷可能导致神经退行性变。尽管其具有病理生理学意义,但错误的 DSB 修复在多大程度上改变了基因组,以及突变是如何产生的,这些问题尚未得到系统的研究,这反映出缺乏有效的研究方法。在这里,我们开发了一种名为 PhaseDel 的计算方法,用于检测单细胞全基因组序列 (scWGS)中的焦点缺失,并分析其潜在机制。我们对来自 18 个不同年龄段的 18 个神经正常个体的 107 个单细胞进行了高覆盖率 scWGS 分析,发现体细胞缺失随着年龄的增长而增加,并且在人类大脑中高表达的基因中更为常见。我们对来自患有进行性神经退行性疾病(Cockayne 综合征、着色性干皮病和共济失调毛细血管扩张症)的 50 个单细胞的分析显示,与年龄匹配的对照组相比,体细胞缺失率升高。独特的机制特征和转录关联表明体细胞缺失在神经退行性变中的作用。