Dept. of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel.
Dept. of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel.
Neuroimage. 2022 Jul 1;254:119121. doi: 10.1016/j.neuroimage.2022.119121. Epub 2022 Mar 24.
Reconstructing natural images and decoding their semantic category from fMRI brain recordings is challenging. Acquiring sufficient pairs of images and their corresponding fMRI responses, which span the huge space of natural images, is prohibitive. We present a novel self-supervised approach that goes well beyond the scarce paired data, for achieving both: (i) state-of-the art fMRI-to-image reconstruction, and (ii) first-ever large-scale semantic classification from fMRI responses. By imposing cycle consistency between a pair of deep neural networks (from image-to-fMRI & from fMRI-to-image), we train our image reconstruction network on a large number of "unpaired" natural images (images without fMRI recordings) from many novel semantic categories. This enables to adapt our reconstruction network to a very rich semantic coverage without requiring any explicit semantic supervision. Specifically, we find that combining our self-supervised training with high-level perceptual losses, gives rise to new reconstruction & classification capabilities. In particular, this perceptual training enables to classify well fMRIs of never-before-seen semantic classes, without requiring any class labels during training. This gives rise to: (i) Unprecedented image-reconstruction from fMRI of never-before-seen images (evaluated by image metrics and human testing), and (ii) Large-scale semantic classification of categories that were never-before-seen during network training. Such large-scale (1000-way) semantic classification from fMRI recordings has never been demonstrated before. Finally, we provide evidence for the biological consistency of our learned model.
从 fMRI 脑记录中重建自然图像并解码其语义类别具有挑战性。获取足够的图像对及其对应的 fMRI 响应,涵盖自然图像的巨大空间,是不可行的。我们提出了一种新颖的自监督方法,可以很好地克服稀缺的配对数据,实现以下两个目标:(i)最先进的 fMRI 到图像重建,(ii)首次从 fMRI 响应进行大规模语义分类。通过在一对深度神经网络(从图像到 fMRI 和从 fMRI 到图像)之间施加循环一致性,我们在许多新的语义类别中使用大量“未配对”自然图像(没有 fMRI 记录的图像)对我们的图像重建网络进行训练。这使得我们的重建网络能够适应非常丰富的语义覆盖范围,而无需任何显式的语义监督。具体来说,我们发现将我们的自监督训练与高级感知损失相结合,可以产生新的重建和分类能力。特别是,这种感知训练能够很好地对从未见过的语义类别的 fMRI 进行分类,而无需在训练期间使用任何类别标签。这导致:(i)从未见过的图像的 fMRI 中进行前所未有的图像重建(通过图像指标和人类测试进行评估),以及(ii)从未在网络训练期间见过的类别进行大规模(1000 路)语义分类。从未在 fMRI 记录中展示过如此大规模的语义分类。最后,我们提供了证据证明我们学习的模型具有生物学一致性。