Shao Zhibin, Li Shaojian, Liu Yanzhao, Li Zi, Wang Huichao, Bian Qi, Yan Jiaqiang, Mandrus David, Liu Haiwen, Zhang Ping, Xie X C, Wang Jian, Pan Minghu
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2204804119. doi: 10.1073/pnas.2204804119. Epub 2022 Oct 10.
Recently, log-periodic quantum oscillations have been detected in the topological materials zirconium pentatelluride (ZrTe) and hafnium pentatelluride (HfTe), displaying an intriguing discrete scale invariance (DSI) characteristic. In condensed materials, the DSI is considered to be related to the quasi-bound states formed by massless Dirac fermions with strong Coulomb attraction, offering a feasible platform to study the long-pursued atomic-collapse phenomenon. Here, we demonstrate that a variety of atomic vacancies in the topological material HfTe can host the geometric quasi-bound states with a DSI feature, resembling an artificial supercritical atom collapse. The density of states of these quasi-bound states is enhanced, and the quasi-bound states are spatially distributed in the "orbitals" surrounding the vacancy sites, which are detected and visualized by low-temperature scanning tunneling microscope/spectroscopy. By applying the perpendicular magnetic fields, the quasi-bound states at lower energies become wider and eventually invisible; meanwhile, the energies of quasi-bound states move gradually toward the Fermi energy (). These features are consistent with the theoretical prediction of a magnetic field-induced transition from supercritical to subcritical states. The direct observation of geometric quasi-bound states sheds light on the deep understanding of the DSI in quantum materials.
最近,在拓扑材料五碲化锆(ZrTe)和五碲化铪(HfTe)中检测到了对数周期量子振荡,呈现出一种引人入胜的离散尺度不变性(DSI)特征。在凝聚态材料中,DSI被认为与由具有强库仑吸引力的无质量狄拉克费米子形成的准束缚态有关,为研究长期以来追寻的原子坍缩现象提供了一个可行的平台。在此,我们证明拓扑材料HfTe中的各种原子空位可以容纳具有DSI特征的几何准束缚态,类似于人工超临界原子坍缩。这些准束缚态的态密度增强,并且准束缚态在围绕空位的“轨道”中空间分布,通过低温扫描隧道显微镜/能谱检测并可视化。通过施加垂直磁场,较低能量的准束缚态变宽并最终不可见;同时,准束缚态的能量逐渐向费米能移动。这些特征与磁场诱导的从超临界态到亚临界态转变的理论预测一致。对几何准束缚态的直接观测有助于深入理解量子材料中的DSI。