Suppr超能文献

一种定量模型揭示了人类大脑中预测和预测误差信号的频率顺序。

A quantitative model reveals a frequency ordering of prediction and prediction-error signals in the human brain.

机构信息

International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.

School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

Commun Biol. 2022 Oct 10;5(1):1076. doi: 10.1038/s42003-022-04049-6.

Abstract

The human brain is proposed to harbor a hierarchical predictive coding neuronal network underlying perception, cognition, and action. In support of this theory, feedforward signals for prediction error have been reported. However, the identification of feedback prediction signals has been elusive due to their causal entanglement with prediction-error signals. Here, we use a quantitative model to decompose these signals in electroencephalography during an auditory task, and identify their spatio-spectral-temporal signatures across two functional hierarchies. Two prediction signals are identified in the period prior to the sensory input: a low-level signal representing the tone-to-tone transition in the high beta frequency band, and a high-level signal for the multi-tone sequence structure in the low beta band. Subsequently, prediction-error signals dependent on the prior predictions are found in the gamma band. Our findings reveal a frequency ordering of prediction signals and their hierarchical interactions with prediction-error signals supporting predictive coding theory.

摘要

人类大脑被认为拥有一个分层的预测编码神经网络,该网络是感知、认知和行动的基础。为了支持这一理论,已经报道了用于预测误差的前馈信号。然而,由于反馈预测信号与预测误差信号的因果纠缠,它们的识别一直难以捉摸。在这里,我们使用一个定量模型在听觉任务期间对这些脑电图信号进行分解,并在两个功能层次结构中识别它们的时空频谱特征。在感觉输入之前的时间段中识别出两个预测信号:一个代表高频带中音调到音调转换的低水平信号,以及一个代表低频带中多音序列结构的高水平信号。随后,在伽马频段中发现了依赖于先前预测的预测误差信号。我们的发现揭示了预测信号的频率排序以及它们与预测误差信号的分层相互作用,这支持了预测编码理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb83/9550773/01c4aeebd4ba/42003_2022_4049_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验