Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
Department of Infectious Diseases, Virology, Centre for Integrative Infectious Disease Research, University Hospital Heidelberg, Heidelberg, Germany.
Nat Biotechnol. 2023 Apr;41(4):552-559. doi: 10.1038/s41587-022-01489-7. Epub 2022 Oct 10.
The formation of macromolecular complexes can be measured by detection of changes in rotational mobility using time-resolved fluorescence anisotropy. However, this method is limited to relatively small molecules (~0.1-30 kDa), excluding the majority of the human proteome and its complexes. We describe selective time-resolved anisotropy with reversibly switchable states (STARSS), which overcomes this limitation and extends the observable mass range by more than three orders of magnitude. STARSS is based on long-lived reversible molecular transitions of switchable fluorescent proteins to resolve the relatively slow rotational diffusivity of large complexes. We used STARSS to probe the rotational mobility of several molecular complexes in cells, including chromatin, the retroviral Gag lattice and activity-regulated cytoskeleton-associated protein oligomers. Because STARSS can probe arbitrarily large structures, it is generally applicable to the entire human proteome.
大分子复合物的形成可以通过检测旋转流动性的变化来测量,使用时间分辨荧光各向异性。然而,这种方法仅限于相对较小的分子(~0.1-30 kDa),排除了大多数人类蛋白质组及其复合物。我们描述了具有可反复开关状态的选择性时间分辨各向异性(STARSS),它克服了这一限制,并将可观察的质量范围扩展了三个数量级以上。STARSS 基于可开关荧光蛋白的长寿命可逆分子转变,以解析大复合物相对较慢的旋转扩散率。我们使用 STARSS 来探测细胞中几种分子复合物的旋转流动性,包括染色质、逆转录病毒 Gag 晶格和活性调节细胞骨架相关蛋白寡聚物。因为 STARSS 可以探测任意大的结构,所以它通常适用于整个人类蛋白质组。